Content

1. Software Process and Req”i’e"‘enfs .

11 Software Crisis
12 Software Characteristics
13 Software Quality Attributes
1.4 Software Process Model
1.4.1 Waterfall Model
1.4.2 Incremental / Prototyping Model
1.4.3 Spiral Model
1.4.4 Rapid Application Development (RAD) Mode|
1.4.5 Agile Model
1.5 Process lteration
1.6 Process Activities
1.7 Computer-aided software engineering
1.8 Functional and Non-functional requirements
1.9 User Requirements
1.10 System Requirements
111 Interface Specification
112 The Software Requirements Documents
113 Feasibility Study
1.14 Requirement Elicitation and Analysis
115 Requirements Validation ang Management

2. System Modeling

Context Models
Behaviora| Models

2.2.1 Data Processing Model

"2

Loy

":}E&_“-«'\: BV

L o

- B8

a?;:

T s

Noo

W N -

B

9
10

2.2.2 State Machine Model
Dala Models

Object Models

2.4.1 Inheritance Model
2.4.2 Aggregation Model
2.4.3 Interaction Model
Structured Methods

CASE workbenches

Data Flow Diagrams (DFD)

3. Architectural Design

Architectural Design Decisions
System QOrganization

Modular Decomposition Styles

3.3.1 Object Model

3.3.2 Data-flow Model

Control Styles

3.4.1 Centralized control

3.4.2 Event-based control

Reference Architectures

Multiprocessor Architecture

Client Server Architecture

3.7.1 Layers in a client-server system
3.7.2 Two-tier Client Server Architectures
3.7.3 Three-tier client server architecture
3.7.4 Client-server characteristics
Distributed Object Architecture
Inter-organizational distributed computing
CORBA-Common Object Request Broker Architecture

4. Real-time Software Design

Real-time systems

System Design

4.2.1 Real Time System Design Process
4.2.2 Timing Constraints

4.2.3 Real Time system Modeling
Real-time Operating Systems

Monitoring and Control Systems

-

Scanned by CamScanner

32
33

34
35
36
36
37
37

42

SRR S

45
46
46
46
47
47
48
49
50
50
50
51
52

53
54
55
55
55
56
58

441 Monitoring SYSterns
44.2 Control Systems

45 Data Acquisition Systems ".-'.‘_
Regression Tesling
5. Software Reuse 2. phaand Beta Testing g;
: Black and White Box Testing o7
54 Reuse of software ‘. Test Case Design o8
52 The Reuse Landscape " Test Automation 69
: - 5 ics for Testi
53 Design Patterns _ 8. Metfc:iaﬁ; Cecs r:lr;?emy 100
54 Generator Based Reuse N CVCE it 102
55 Application Frameworks gy?t:v;,rle ey 103
, 0 .
5.6 Mod?l-\f:ew—controﬂer (MVE) Estimation Techniques 104
57 Application System Reuss 915 Algorithmic Cost Modeling _ 108
5.7 1 COTS production integration Ml Estimation Accuracy 105
5.7.2 Product Line Development * 5,17 The COCOMO Model 106
' - Project Duration and Staffing 108
6. Component-based Software Engineerin ' 9. Quality Management
6.1 Components : 9 :) 109
6.2 Component Model o1 Quaily Concett
6- - pone els - fogo Software Quality Assurance 111
.3 he CBSE Process - ’ ng _,'9_‘_3 software Reviews 113
64 Component Composition ot NS 4 Formal Technical Reviews 116
v fg5 Formal Approaches to SQA 118
Le . . . isti i 118
7 Verfation and Vlideton 35 Sosanamy v
7.1 Verification ' 9.8 A Framework for Software Metrics 120
7.2 Validation) 1 9.9 Metrics for Analysis and Design Model 121
7.3 Planning Verification and Validation 910 SO Standards =
74 Sowaare Inspections -+ f 911 CMMI 12;
;65 Vgr'lﬂcation and Formal Methods 9‘:2 g%’:\ Planc Hificati ’ 127
6 Crilical System Verification and Validation i g 013 =° ware Certification
8. So o7 3 10. Configuration Mana ement
ftware Testing and Cost Estimation ' . 3, :
8.1 Software Testing | 101 Configuration Management Planning AN 128
8.2 System Testing o 102 Change Management _ 130
2.3 Component Testing ‘| 103 Version Management 131
4 Integration Testing 104 Release Management ' 134
3.2‘1. Big Bang Integration Testin -] 105 System Building i : 135
4.2 g v i .
Incremental Approach : : 110.6 CASE Tools for Conﬁ;urahon Management 1.35
)

Scanned by CamScanner

i1. object Oriented Software Epg:
NGineen: 5
Object Oriented Analysis eﬂ'ﬁ f
Object Oriented Design
Unified Modeling Diagrams
11.3.1 Use case Diagram
11.3.2 Activity Diagram
11.3.3 Class Diagram !
11.3.4 Sequence Diagram |
11.3.5 Component Diagram
11.3.6 Deployment Diagram
11.3.7 State Machine Diagram

1.1
1.2
11.3

12. Introduction o Software Engineering T

and Technology e Prlocess and

Softwar
Requir'emen'l's

12.1 Agile Development
122 Extreme Programming
12.3 Cloud Computing

12.4 Grid Computing

12.5 Enterprise Mobility

ering discipliné thatis concermed with
tion from the early stages of system
has gone into use.

Software engineering is an engine
all the aspects of software produc _
speciﬁcation to maintaining the system after it

4 Software Crisis

Software crisis is the situation resulted due to the ca
software development which leads to incomple
performance of software products.

5 Term was coined in the year 1968.

> Software crisis was due to the rapi
power and the complexity of the pro

tackled.
: Causes of software crisis:
! 1) Projects running over-budget
g 2) Projects running over-time
3) Software was Very inefficient
4) Software was of low quality

tastrophic failure of
te and degrading

d increases in computer
blems that could not be

Software Engineering ® [1

Scanned by CamScanner

5) Software often did not meet the requirements
§) Projects were unmanageable and code was difficuy
i o
0S 360 as an example of software crisis:

» Officially known as IBM System/360 Operating g

» Adiscontinued batch processing operating Syste
by IBM

Announced in 1964,
Entered the market in 1867, chock full of errorg,

The system was huge, involving more than a mj;
codes, written by hundreds of programmers,

Was the disastrous result of an untried methodology,

ystem,
m de'-relc;pmI

w

v v

v

» Unacceptable due to the tedious performance ang the
complexity.
- - __—_—_""\
1.2 Software Characteristics il 8

The characleristic of the software can be written as:

Software is developed or engineered; it is not manufaclured_In
classical paradigm.

v

Time and effort for software development are hard to estimate,
Software does not tear out.

Software is malleable.
Software construction is human intensive.
It has discontinuous operational nature.

Software components should be manufactured in such a way
that is can be reused for various application.

v v

v v

v

'

| 1.3 Software Quality Attributes

The software quality attributes has been given the acronym FURPS—
functionality, usability, reliability, performance, and supportability.
The FURPS guality attributes represent a target for all software design:
% Functionality: Refers to the degree of performance of the

software against its intended purpose.

“ Usability: Refers to the extent to whi

ch the softwa]
with ease. i i re can be used

o Reﬂa_hllity: Refers to the ability of the software t
functionality under the given conditions.

-""— e Enal

|

o provide desired

li

=

L ing speed,
o: Is measured by considering pmiff:fgﬁciencx&
Peffarmalt?;e' resource consumption, throughput.
nse Um=:

R i i developers

ortability: efers to the ease with which fr?;:wﬁ; s

y 0. from one platform to anotner, ou

tware from or with
nsfer sof

num) changes.

fware Process Model

the
i« a set of related aci]v_'it‘les that E:\?:lol:rnent
process is e. These activities maymvoh_.relme o
he sof%aersﬁratch, or, modifying an existing sys " s
o e he simplified representation of a 50&;3:
be d "ﬁ\:;r:zetnls a process from a specific perspe
ode

models:
following software development process
y the

del
Waterfall Mo ‘
12' Incremental | Prototyping model

iral Model »
i fzz:?d application development (RAD) mo
4.

5. Agile Model

we stud

in which the
a software developmentlhr:o:;:‘ign\: slleen =
ially into :
iy is flowed sequentia _ il
| dt‘\i::v:erdos (likea water) through different p
teadily doO

| y
l‘. 1S “le I lSl |0Ill|a“ dei ||.ed Soﬂwate developillelll I”e Cycle

model.

In this WalerIan
as the input 1or Sl
owing illustration is @ representation
Model.

flowing $
>

|||Dd81 typh:a"y the OUiCOIlle 0' one pl |a§e acts
' 1 h

uentially.
the next pRas® S0 ¢ tne different phases of

rd

The foll
the Waterfall

" oftware Engineering ® E

Scanned by CamScanner

q Ew;‘j___i \ : .:__..-'.

\@]*\

A
% ‘Mntengnce.. |
Fig: The waterfall model of Software development lifecycle
1. Quality assurance

> Oversees each steps of model towar

ds producing usefu,
reliable software rather than connection of modules.

> Allthe phases are governed by quality assurance.
2. Concept and analysis '

> Problem described in human language.
7 Model the concept with mathematical formulas and algorithms.
rg

Analyze the software within the fra
description and concept.

Analyze on the interactions and ‘inte
software, the hardware and data inputs.
3. Requirements

mework of the system

rfaces between the

> All possible requirements of the system to

captured in this phase and documented
specification document.

4. Design

be developed are
in a requirement

> The requirement specifications from first phase are studied in
this phase and the system design is prepared.
> This system design helps in specifyin

requirements and helps in defi
architecture.

g hardware and system
ning the overall System

' k4 » Software Engineering

| e.
Ad mplé and easy 1o understand and us

ramming)
proghe methods of programming - assembly language, high level
|anguages. i

SE toals are on the horizon.)
¢ rce file (Assembly language mnemonics) -> assenglgh; >
Sﬂ‘ém file -> linker -> Binary machine code -> Burn -> P
i fiully programmed software is then implemented.
7 S

i1 and verification | P

e he units developed in the implementation phase @
.H Ai:e;ra!ed into a system after testing of each un{t.
in entire system is tested for any faults and failures. .
Theting are done through alfa test, beta test, black box

S :
zﬁd white box testing.

g

N

'

w

Mai ance . ; e client
e are some issues which come up ;gast:d

-, (=} .

g Zzslzinment. To fix those issues, patches are r

i released.
to enhance the product some better versions Z:.: D
NS? tenance is done to deliver these changes In
Mainte
environment. .
antages of waterfall model:
v

>
>

; del is si ST he model — each
1) This mo due to the rigidity of the

;i to manage du
2) Itis easy

; SS.
. a review proce
ific deliverables and
has spegcific
phase

ted one at a
i model phases aré processed and comple
s m
. :!;ntgl Phases do not overlap. o
.rfall model works well folr Dz
4 \::gﬁremen\s are very well understood.

rojects where

del: _
Disadvantages of waterfall mo g stage, itis very difficult 10

ion is in the testin thought out in
1) Once an a%pgz::l';‘; :;omelhing that was not well-thoug
go pack an

the concept stage. .
| i are is pro
2) No warking softw e

i f risk and U . T,
 hch 9"”“:“::;61 for complex and object-oriented P j
" Not a goo | M
;)] Poor model for long and ongoing Proj

i i cle.
duced until late during the life ¢y

ents are at @

j e requirem
Not suitable for the prorc;s i :;r-\er
o m%derale to high risk of changd |
software Engineering ® E
- ——

Scanned by CamScanner

I —

When to use the waterfall model:
& This model is used onl ; j
known, clear and fixed. ywienithe requirementg %‘-;{." ot es of Prototype model:
& Product definition is stable. - t;ip‘d\-‘:; clients 8¢ actively involved in the development. -
Y 5 in thi i he syste
& Technology i ... EEEE. ce in this methodology a working mode! of t
oo gyis Unc{erstopd. g | 2) S:Evided. the users get a better understanding of the syste™
X ere are no ambiguous requirements 78 e Ee‘mg developed.
< Ample resources with required expertise a] ¥ Errors can be detected much earlier. ‘
& The project is short. e available fre% Quicker user feedback is available leading t0 petter solutions
23] Missing functionality can be identified easily.
r difficult {functions can be identified.

[T4.2 Incremental / Prototyping Model

i&c:g'lf}?;a:t Tc;qel is the model of software development [ife &
s o lheeaslzf m;;:rr(:rcess starts with a simple impf\@m'Enl ife
: . are requirements and iterati entation
evolving versions until the full system is im Pfe:rtne; ::gfdely enhang of

»

requirements of the software. :

e
undergo immediate evaluation.

This is follow u
p by the quick o
elements UG design, in whi ;
of the software, the input and the oquS:‘:ahretgzs;;sE
2 syl

The client then
evaluates th £
recom i e protot s 5 AR
mendations and suggestion to theygr?al?:f Providce s

The proci ;

ess continues i i

: ina ; .
user requirements are met. n iterative manner until the all the

ACCO]I""OdEtES p|0ble|' 1 of C|ial |g” g ieqUIrelllelllS

Y

v

Start

Ig e
F The proto Ping model of SOI‘W&I’B devel, .pl'.'lenl |
ty g 0|
lifi cycle

i
In thi L

is model the developer and client interact to establi h 3

ish]

Esse I i i d
. m ki

) confusing of

Bq
3! 6
’; -sadva"tages of Prototype model: p
o Leads to implemenling and then repairing way of puilding -
y of

e complexit

1)
peyond original

5ystem5.

Practicany‘ thi
(em as SCcope

s methodology may increase th
of the system may expand

3 the sys
n not to be used

4 plans:
| incomplete application may cause applicatio

as the full system was designed.
Incomplete of inadequate problem analysis.

iy M
. 2 Prototyp€ model should be used when the desired system
have a lot of interaction with the end users.
s have a VEY high

needs to
fly, online systems, web interface
h end users, are pest suited for

{ of interaction wit .
Prototype mo take a while for @ system to be built
that allows ease d needs minimal training for the end

|
: user.
i s Prototyping ensur

system and provide a feed
prototype to result in a usea
' designing good human comp

of use an
work with the
rated in the

ble system. They are excellent for

uter interface systems.

1.4.3 Spiral Model

hich uses incremental approach to development that
£ waterfall and prototyping model.

d the development spiral provides. 2
\ete version of the software.

e requirements control

It is the model w
provides a combination 0

» Each cycle aroun
successively more comp

Model allows flexibility to managd
changes
Risk driven

s

rather than document driven.
Software Engineering ®

Y

T

Scanned by CamScanner

% More emphasis placed on risk analysis.

A Cumulative cost

. 1o use S iral model:
\ q{ P en i e g
weter:hine Progress) AL . \When costs and risk evaluation is important
- any kL
objectives S

For medium to high-risk projects

Long-term project commitment unwise because of potential
’ changes to economic priorities

F Users are unsure of their needs

) Requiremenls are complex

L, New product line

A een spiral and waterfall model:
B ferences = —————— ———————
Review Pt Prototype 1, Prototype 2\ projotyne _ D gpiral model l. Waterfall model —
e | e /"’.'T:nodel is not suitable | 1. Waterfall model is suitable for |
L T . ?;“fmau projects. .~ | ‘smallprojects. .
Derwopmus] Vot B IterrlSK management. | 2. High arr_munt of risk and l
1‘!— & men B 2 Be = | . unceﬂaﬁ\{zb - —
1 BT | 3.Easytounderstand. ..
ELE Breoms I B Egpg@ds.sf!ﬂ-@p—‘%‘-—F“‘ﬁ‘s'g;g;;‘eam defined. |
R —;;;menmm : I 4-.-T1"e prgcess Ay | ' e
4.Plan the Réladsi *_______/ 3 Jndeﬂﬂl[ew_l I—s_s_UEéE i-e—;;'r"—"—'r's “This m;del S nok suilabie for \
next iteration 3.Development . | | 6. This mr?geongdlﬂg projects. \ 10“9_@&@!'!912“519 rojects. =
and Test . l_’__'l_lelg_.?_— ——'—lle;ak;wed II 6. Sequence is followed. |
. - | "¢ |lerations are 10 : 'I
Fig: The spiral model of Software devel i |6 e e T T s
| p! elopment lifecycle | o R T 7. Requirements once fixed
7. Fleﬂmeﬁ]\,\g::;ser J_ cannot be modified. -
B _r_e_q@[g____ﬂ__'_._— . | Refinements are not so easy. |
Advantages of Spiral model: Ii PB Refinements are easily | 8.

| e e
1) High amount of risk analysis hence, avoidance of Risk is || . POSSIRE————"""
enhanced. =

: |
2) Good for large and mission-critical projects. '
3) Strong approval and documentation control.

i elopment
| R id application development mo&_‘le’l ’ffaio?{gf‘\::;;?d gfo\:.m ngg'
4) Additional Functionality can be added at a |ater date. ! mae?hodol.ogy that uses minlma_ planning : et et
5) Software is produced early in the software life cycle. : e et e derr?eogomme‘e o s
Disadvantages of Spiral model: '. The tle B e t
ivery. . ; i
1) Can be a costly model to use. prpduct delw.svm e maktesr;\cs::
2) Risk analysis requires highly specific expertise. > &nc:ap ér;:{: [;1 0 Aot e B pmn process.
3) Project's success is highly dependent on the ri . nea . I i |
phase. risk analysis ‘> Itfollows iterative and Incr{efn O i ot exp;?:é
4) Doesn't work well for smaller projects. % Have small teams campr;sw;gn o S s WO |
: customer representatwe i RS
E * Software Engineering

; i onentor P o o
E progressively on their comp Software Engineering B

Scanned by CamScanner

u dig lnE
p l e ti o) ' I
» ”le develo ments ar me b xed delivere

assembled into @ working prototype.
i ive the cus
is can quickly give
g ::ds o provide feedback re
requirements.

; i3
er somelhlnglto see and yg
tgg;ding the delivery and thgj

Fig: Brief view of RAD Model .
RAD model distributes the analysis, design, build and test phases into
a series of short, iterative development cycles.
Following are the various phases of the RAD Model:
Business Modeling

» Business model is designed in terms of flow of information and

the distribution of information between various business
channels.

» The information flow is identified between various business
functions.
» Complete business analysis is performed to find the vital
information for business
» Takes information gathered through many business related
sources. ; - :
Data Modeling

» Information gathered in the Busine
reviewed and anal
business.

» The quality of every g

roup of information is carefully examined
and given an accurat

e description.

Attributes of all data sets is identified and defined.
Relation between these data objects are established and
defined in detail in relevance to the business model. '

: ;

1] » Software Englneerlng
— e

‘f

h—___

ss Modeling phase is:
yzed to form sets of data objects vital for the .

Team 2 Et‘am 3
Team | Busigess Hisen
wodeling modelng

Pusiness
modeling

Apphicaniea
generanon

Fenetanon

Tewnng &
turnever
Fig: The RAD model of Softw.
Process Modeling

=

» The data object sets defined in the Data Modeling phase are

corwer}ed to est_ablish the business information flow needed
to adci'lneve specific business objectives as per the business
madel.

are development lifecycle

> The process model for any changes or enhancements to the
data object sets is defined in this phase.

Proc_es_s descriptions for adding, deleting, retrieving or
modifying a data object are given,

Stage changes and optimizations can be do
data can be further defined.

Application Generation

3

> ne and the sets of

»- The actual system is built and coding is done by using-
automation tools to convert process and data models into
actual prototypes.

> Datamodels created are t
be tested in the next step
Testing and Turnover

urned into actual prototypes that can

> The overall testing time is reduced in the RAD model as the
prototypes are independently tested during each iteration,

However, the data flow and the interfaces between all the

components need to be thoroughly tested with complete test
coverage. "

>

—imE e

Software Englneering -

Scanned by CamScanner

< Advantages ©

' omponents have g
i ost of the programming ¢ e re
» i;ne?-,e;;:ted. it reduces the risk ¢f any major issues. y

f the RAD model:

1) Reduced development time.

2) Increases reusability of components.

- 3) Quick initial reviews occur.

4) Encourages customer feedback.

5) Integration from very beginning solves a lot of integraﬁm

issues.
Disadvantages of RAD -
1) Depends on strong team and individual performances f
identifying business requirements.
2) Only system that can be modularized can be built using RAD,

3) Requires highly skilled developers/designers.

4) High dependency on modeling skills.
5) Inapplicable to cheaper projects as cost of‘modeling and
automated code generation is very high.

When to use RAD model:

RAD should be used when there is a need to create a systen
that can be modularized in 2-3 months of time.

= |t should be used if there's high availability of designers fy
modeling and the budget is high enough to afford their cos|
along with the cost of autom ated code generating tools.

& RAD SDLC model should be chosen only if resources with high
business knowledge are available and there is a need bo
produce the system in a short span of time (2-3 months).

model:

o

| 1.4.5 Agile Model |
Agile development model is a type of Incremental model which results
in small incremental releases with each release building on previous
functionality. :
> lterative approach is taken and working software build 1s
delivered after each iterations. :
> The tasks are divided to time boxes (small time frames) ©0
deliver specific features for a release.
> Each release is thoroughly tested to ensure software quality
maintained. ;
> Used for time critical applications.

= Software Engineering

emental in term
res required by the customer

» Extreme Programmi
: ming (XP)
agile development Jife csffcle)rrlmso;;"en"y the most well known

Here is a graphical illustration of e Agile Model
e el:
///A"E.Eﬂt_}\\

{_E_‘Ens | Iteration 1 sz!:igr!_._i'

s of features: the final build

’ > i f
3 Testing | Neration2 &
L“—""Ej" o v,

,

.

1 Building - T oL

. Tterats e
Lln}hr»g | tion H | Design .|
/

gt

Fig: The Agile model of Software development lifecycle

Advantages of Agile model:

1) Customer satisfaction by rapid, conti)
i ntin
soltware. yrap uous delivery of useful

2) People and interactions are emphasized rather than process
gnd tno[s_. Customers, developers and testers constartly
interact with each other.

3) Working software is delivered frequently (weeks rather than months).

4) Face-to-face conversation is the best form of communication.

5) Close cooperation between business people and developers.

6) Continuous attention to technical excellence and good design.

7) - Regular adaptation to changing circumstances.

8) Even late changes in requirements are welcomed
Disadvantages of Agile model:

1) In case of some software deliverables, especially the large
ones, it is difficult to assess the effort required at the beginning

of the software development life cycle.
Software Engineering om

Scanned by CamScanner

v

islackof emphasis 0 . : '
. l};erepro}ecl can easily get taken off track If the custom,
3) e

esentative is not clear what final outcome thal they wany,

repr jor programmers are capable of taking the king

4) Only 'SEZI e quired during the development process. Hence
ﬁ::li:g place for newbie programmers, unless combined wig,

expen‘enced resources.

se Agile model:
When to U ded to be implemented. Nay,

n be implemented at very little cost because of the
f new increments that are produced.

e developers need to lose only
urs, to roll back ang

& When new changes are nee
changes ca
frequency O

& Toimplement a new feature th
the work of a few
implement it.

days, or even only ho

1. More risk of sustainability | 1. Better risk management.

| _andmaintenance. L ———— i
| 2. Large number of intermediate |

| 2. Minimum rules, ‘ _

| documentation easily | stages reqmlres excessive

employed. | documentation.

3. LiL“ﬁE’_ﬂ?_l‘ﬁl“ﬂ'lg_@q‘?ile.d_:-E_:}:.EEFHF‘,Q_is_'E%’i'Ed.-__..__.___

| 4. Easytomanage. ____ﬂ_i_4_,Manag_g_n‘!t_ant_isfrn_orggmplex, !

!_5, Early delivery of partial | 5. End of project may not be

| working solutions. ! _ RGN T 1 Tt b R
| 6. Suitable for small projects. 6. Not suitable for small or low

' | riskprojects.

[eni

-
|

F!TEe;e_n_ds heavily on | 7.Does not depend heavily on 'l

| customer interaction. | _cuslomer interaction. ______|

| 8. Every iteration is a i 8. Every iteration is not a I

. separatemodel. | separatemodel. |

1.5 Process Iteration l

The Water Fall model was widely used in softwvare development for

many years but these days, the process iteration is being adopted

more and more.

> There is now a number of well-established iterative
development process model that van be classified according to
the levels where iterations are applied.

* Software Engineering

n necessary designing and documen[a“nnv—'

» [lteration can improve yaj;
earlier quality feedback

» Moreover, there is an jm

iteration. portant bond among teamwork and

» Altogether form a Softwars
view changing to an iterativu
very well raise our
development,

1.6 Process Activities \

The software process is the set of activiti

. ctivities that i
the production of a software product. Taisw:nn;: al_::;}:::!eupu:g
developmegl tOf Toflwa(e form a scratch. There are different software
processes but all must include the major four activities. They are:

e:rocess Iteration (SPI) points to
proief!\-je10pment process mode! could
Ssional standards in software

——>1. Software specification / Requirement Engineering
a) Feasibility study

b) Requirement elicitation and analysis
R | Requirement Discovery
— ii. Requirgment classification and
organization

———— iii. Requirements prioritization and
negotiation

L, iv. Requirements specification

¢) Requirement specialization

d) Requirement validation

— 2. System design and implementation

a) Architectural design

b) Interface design

c) Component design

d) Database design

——> 3, Software validation

a) Development / component testing

b) System testing

c¢) Acceptance testing

| 4, Software evolution

__— Software Engineering ®

Scanned by CamScanner

ribe the softwareé development processes in detail:
c

let's des ' o
No: ftware speciﬁcatinnmequ:reme.nt E. g jaen gm
b ification or requiremen:_s ternglrheennugired and;?dece.Ss.
SOSME%Z?:; and defining what services are réd i
understa v _
the constraints on these services. . L —

» Ensures that the software will meet the u - a

ending up with a high quality software. :

ftware process as errors at this st

: o S0 . .
» It's acritical stage of the { stages, which definitely will Causg

will reflect later on the nex
higher costs.

There are four main activities (O sup-activities) of requiremens

engineering: -

e / Requirements
.‘/ Feasibility Elicitdliﬂ";wk‘—{
| Study 1
N

Analysis /7 E
] > Requirements
| specification

— | 2o i Requirem_enls
Feasibility i __ Validation)
Report 1 e T—

System
Madels T

User and System |
Requirements

l_._.... Requirements

== Document

a) Feasibility study: An estimate is made of whether the identified
can be achieved using the current software and hardware
technologies, under the current budget, etc.

b) Requirements elicitation and analysis: This is the process of
deriving the system requirements through observation of
existing systems, discussions with stakeholders, etc.

c) Requirements specification: It's the activity of writing down
the information gathered during the elicitation and analysis
activity into a document that defines a set of requirements.

d) Requirements validation: It's the process ‘of checking the
requirements for realism, consistency and completeness.

2. Software Design and Implementation:

» The implgmeptalion phase is the process of converting a system
specification into an executable system.

* Software Engineering

» Asoftware design is a descrinfi

to be i|r|p1emented d m rf; n system
, data i
B OdeFS, Interfaces betwee t

e the algorithms used

The sof i ¥
. they ad??gfn?:lﬁfr;irds ge:e.ilm the software design iteratively;
develop their design, elall and correct the design as they
Here's an abstract model of

the desi i i
activities, and the documents ¢ €sign process showing the inputs,

o be produch as output.

— Design inputs
——— S
1 -1 [.
Platform | | paqui proe—tei, |
equ !
| information | | l | Data |
|

: _._sPa_!Eification £ | description

]

Design activities

lf____.,.___ i iR T, e

PR A e

[Architectural " Interface Component |
L design UL design 7™ design)

Sy e A p -
s |

] L Database design }
SRS ISR s i, i cos M TN |
e oy l Design outputs
= ————
: " —) e i O
| j Sy_stem ' | Database o Interface ! Component |
| architecture | spedification | specification | . specification | |

Fig: A general model of the design process
The four main activities that may be part of the design process are:
a) Architectural design: It defines the overall structure of the
system, the main components and their relationships.
b) Interface design: It defines the interfaces between these
* components, The interface specification must be clear.

¢) Component design: Take each component and design how it
will operate, with the specific design left to the programmer, or
a list of changes to be made to a reusable component.

d) Database design: The system data structures are designed
and their representation in a database is defined. This depends
on whether an existing database is to be reused or a new
database to be created.

Software Engineering ®

Scanned by CamScanner

3, Software Verification and Validation: p
idati ification and validation (v,

ftware validation or, more generally, veri ! . 1 (Vay

fsc:nlended to show that a system both conforms to its specification ang

that it meets the expectations of the customer.

1.7 Computer-aideg Software En

Compuler-aided software i :
computer-assisted toofs aﬁgglﬂeenng (CASE) is the application of

: - i f method
_ . pee. e | ensure a high-quality ang S In software d
- - “ /" Acceptance O\ Y and defect-free software RUSoprmeny i
¢~ Component i / P > CASE ensures a ch : ;
(; »{ Systemtesting ™ testing hel ‘ eck-pointed and dj
(esting . B\ ftesting elps designers, developers, te 1” disciplined approach and
i "‘ isee the project milestones dL‘Il‘il‘lsg Zr:‘;;;apnr{a}g:[s SR oREsn
¥ It can serve as a repgs; . '
Pasitory for project-related documents fike

Fig: The stages of testing " e
#» Delivery of the final
requirements as it e

s.and design specifications.
Product is more likely to meet real-world

Testing has three main stages.

a) Development (or component) testing: The components nsures that customers remai
making up the system are tested by the people developing the prUFBSS- in part of the
system. Now b briefly go through various CASE tools
b) System testing: This process is concerned with finding errors 1. Diagram tools:
that result from interactions between components. It is -alsg - » These tools are used 1o represent
concerned with showing that the system meets its functional and and control flow among vgrious si);::rzrrne‘:g:n?o:sgﬁé dah:l
non-functional requirements. system structure in a graphical form, P on
c) Acceptance testing: This is the final stage in the testing » For example, Flow Chart Maker toal for creating state-of-the-
process before the system Is accepted for operational use. The art flowcharts.
system is les!ed \»}nth data supplied by the system customer 2. Process Modeling Tools:
rather than using simulated test data. x B i)
; rocess modeling i
4. Software Evolution: e g is method to create software process model,
which is used to develop the software.
> ltis very costly to make changes to the hardware system. .)
> Process modeling tools help the managers to choose a
> However, changes are often created to software package at process model or modify it as per the requirement of softwa
any time throughout or after the system development. et SR quirsmant.ol Soers
There has continuously been a split between the process of > F L
software system development and also the process of software or example, EPF Composer.
evolution (software maintenance). 3. Project Management Tools:
> It's more realistic to think about software engineering as an % These tools are used for project planning, cost and effort
evolg:ionar_y c;:rcﬁess _wherever software is regularly modi]ﬁed estimation, project scheduling and resource planning.
over its period of time in response to ever-changing necessities : .
and cliegt desires. 2 : L % For example, Creative Pro Office, Trac Project, Basecamp.
} - ! 4, Analysis Tools:
P e T B g to gather requirements, automatically check
7' Define system », _ / Assess existing ", _ / Pro tem, / THTRS 3 These tools help !)
g pose system %, _, Modify for any inconsistency, Inaccuracy in the diagrams, data

| . - i’
.. requirements . systems changes 7y stems s
JERROENG N TS e\ CUREES: B e redundancies or efroneous omissions.

= _T_ - 1 » For example, Accept 380, Accompa, CaaeCom!:Iete for
’ Exsting | [New | requirement analysis, Visible Analyst for total analysts.
| systems | system | 9

e - " Software Engineering ®

» Software Engineering —_

Scanned by CamScanner

”

Design Tools: ! <
help software designers to design the pjo,
» These tools help are, which may further be broken dow:

structure of the softw. €
in smaller modules using refinement techniques.

% For example, Animated Software Design.

Programming Tools:_ _ _

» These tools consist of programrn_ing environments like IDE, j.
built modules library and simulation tools.

> For example, Cscope to search code in C, Eclipse.

Web Development Tools:

» These tools assist in designing wep pages with all allieq
elements like forms, text, script, graphic and so on.

» For example, Fontello, Adobe Edge Inspect, Foundation 3,

Brackets.

Quality Assurance Tools:
> Quality assurance tools consist of configuration and change

control tools and software testing tools.

» For example, SoapTest, AppsWatch, JMeter.

Importance of CASE tools:

Reduce the cost as they automate many repetitive manual

tasks.

Reduce development time of the project as they support
standardization and avoid repetition and reuse.

Develop better quality complex projects as they provide
greater consistency and coordination.

Create good quality documentation.

Create syslems that are maintainable because of proper
control of configuration item that support traceabllity

requirements.

Disadvantages of using CASE Tools:

L]

mo Software Engineering

Produce initial system that is more expensive to build and

maintain.

Require more extensive and accurate definitions of user needs
and requirements.

May be difficult to customize.

Regquire training of maintenance staff.

May be difficult to use with existing system.

e
1.8 Functional and Nopfori——

Functional Requiremems:

Functional requiremens are the
5
the system should do o provids f:rr

» Describes the beh
system's functiona;

Includes the deseri
associated reports or
held in the system,

» Specified by users themselves,
Non Functional Requirements:

Non-functional requirements
the performance characteristj
on how the system will dg sg

» Defin i
~ Defines the constraints, targets or contral mechanisms for the

new system,

Describes how, how
be provided.

Y

and software develoy
They are sometimes
can be measured
tangible.

v

Identify realistic, measurable target values for each service level,

These include reli

responsiveness, throughput and security,

Example

If you are developing a Library system for your college, then the
functional requirements can be listed as:

And the non- functional r

——— . e e ST

avior of the g i
e system as it relates to the

i ;
plion pf the required functions, outlines of

Specified by technical peoples e.g. Architect, Technical leaders

= :
functiong Requirements

Equirem o i
ikiohly ents which deal with what

online queries, and details of datg 1q be

:!T tl:ose requirements which elaborate
Ofthe system and define the constraints

well or to what standard a function should

pers.
defined in terms of metrics (something that
about the system) to make them more

ability, performance, service availability,

Membership facility

Issue of new books

Return of books

Visiting Books status

Pre booking of books

equirements can be listed as:
Throughput

Service availability
Security of the system and
Reliability of the system

Spftware Engineering *

Scanned by CamScanner

: ctional _and _non-functi :
Differénce between the funct UE] » Defines what should pg ;
Imulemented S0 m

requirements: - contract between ¢|j

requirements: i ek inetional Rt A client ang Contractor,
. s i ; velopm

Functional Requirements | Requirements practically meet iZL:eam “ho need to understand how to

7 Functional requirements are [1. Non-_functlonai e technologies, equirements using available
. ks - ntsthat |~ requirements are those - = » Related to hardware
Sise FOQUITOM irements that define the 3 and software,
- deal with what the system requirern el & > Usually describe the system thati :
should do or provide for | conShaml‘ﬁ gn e Deals with the characteristic STequired 1o host the solution.
users. i §X§‘_‘3€"‘_"_T"!._9£0-_ usability, maintainability ands:cr::ilahb?“?ymem such as reliability,
oduct | 2. It determines the product Are the non-functional requirements Y.

_2, It determines the pr Sities
i ro | 5
_ features. i POREER s They are general characteristics

ay be part of a

of the system and may not be

3 it 15 defined by the users. 3. Itis determined by the = - ¢ | necessarily directly observable by the user.

software developers and

G [archilecin.. 1 ey 1.11 Interface Specification

| 4. Itis comparatively difficult.

PR
4. Itis easy to test the

| . |
| funclional requirements. | e P Large systems are decomposed into sub i
==k equiremeTss. interfaces between these subsystems, systems with well defined

1 » Specification of subsyst i 1
o er ne uirements n I e ubsystem interfaces allows
1.9 Us R q . development of the different subsystems. independent
User-requirements are the high level statements in a natural language # Interfaces may be defines as abstract data type: .
with diagrams of what the system should do and the constraints under classes. ypes or object
which It must operale. . The algebraic approach to formal specification is particularly
» Should use as little technical terms as possible and must be well suited to interface specification.
u:}derslandable to the users. Three types of interface may have to be defined:
» Often referred to as user needs, describe what the user does st Procedural nterices
with the system, such as what activities that users must be able !
to perform. « Data structures that are exchanged
Generally documented in a User Requirements Document » . Datarepresentations

(URD) using narrative text. g - -
Signed off by the user and used as the primary input for 1.12 The Software Requirements Documents 1

creating system requirements. :
gf . : “ i A Software Requirements Specification (SRS) is a document or set of
Are the functional requirements. documentation that describes the features and behavior of a system or

Need to be described in the business domain and in any formal software application.
the stakeholders want to allow such mutual understandings. > Itis a description of a software system.to be developed.

i » Traces out functional and non-functional requirements.
L1 SYStem Reqwrements RS > Includes a set of use cases that describe user interactions that*
the software must provide.

System requirements are the building blocks that the developers use!©
build the system which consist of the detailed description of the softwar® Establishes the basis for an @
system's functions and operational constraints. and suppliers.

aeos oo L Famens

greement between customers

Software Engineering -_
+ Software Engineering .

Scanned by CamScanner

» Permits a rigorous assessment of‘requirements before deslgn
can begin and reduces later redesagn..

% Provides a realistic basis for estimating product costs, risksl
and schedules.

» Used appropriately,
help prevent software p

» Enlists enough and necessary require
for the project development.

Goals of SRS Document:

A well designed, well written SRSd

four major goals:

& Feedback to customers

+ Problem decomposition
& Input to design specification
& Production validation check

Characteristics of SRS Document:

The main characteristics or features of SRS documents are written as:

1. Accuracy: This is the first and foremost requirement. The
development team will get nowhere if the SRS which will be the
basis of the process of software development, is not accurate.

2. Clarity: SRS should be clearly stating what the user wants in the
software.

3. Completeness: The software requirement specification should
not be missing any of the requirements stated in the business
requirements documentation that the user specified.

4. Consistency: The document should be consistent from beginning
1ill the end. It helps the readers understand the requirements well.

5. Prioritization of Requirements: Software Requirement
Specification should not simply be a wish list. The requiremnents
should follow the order of priority and preference.

6. Verifiability: At the end of the project, the user should be able to
verify that all that all the agreed deliverables have in fact been
produced and meet the project management requirements

specified. ;

7., Modifiability: The SRS should be written in such a way that it cal

be modified when the development team and user feel the need:

8. T@caabilily: Each requirement stated in the SRS should b€
uniquely associated to a source such as a use case or interaction
document.

- Software Engineering

software requirements specifications can
roject failure.
ments that are Tequireq

ocument accomplishes the follm,\f'lngl

.—-——''_._.___‘_‘_‘—‘—-—-_
1.13 Feasibility Study
The study which involves the
; 4 analys;
jevant info . YSIS of th
alrsetatlrmalon ainty 2 e adcotcion o
e L| € requirements jg called azaf':;l_tgle best system
> in aim i sibilit
whether it WOL::;L "he feasiilty study actiiy Ao
i be flnancially pids ity is to del.?rmine
evelop the produgt. nd technically feasible to
> Angl_yzes whether the g
requirements.

Determines whether {

he softwar im
ih TSIt tachiat. 8ré can be implemented usin
e chisdule. ay and within the specified budget an_gi

oft]
ware will meet organizational

¥

Determines whether
existing software.,

v

the software can be integrated with other

¥ Inthis phase, the develg isi
thlr ystent pment team visits the user and studies

.r They investigate the need for development in the given system

The crucial purpose of this i
: phase is to find t
define the problem that has to be solved. o b e

* g{;}.rc:he etntg {)'11 IIP;e feasibility study, the team furnishes a
ment that holds the different specific i
lie i iGsin aystaen. p recommendations for

Topics under feasibility study:
The various topics included under feasibility study are:
1. Technical Feasibility:

» Concerned with specifying equipment and software that will
successfully satisfy the user requirement.

» Technical needs of the system may vary considerably, but
might include :
« The facility to produce outputs in a given time.
‘"« Response time under certain conditions.
« Ability to process a certain volume of transaction at a
particular speed.
« Facility to communicate data to distant locations:

bility, configuration of the system is
the actual make of hardware.

ha complete picture about the

» ' In examining technical feasi
given more importance than
The configuration should give
system’s requirements.

v

--____'_____———-.——‘—' Software Engineering ®

Scanned by CamScanner

2. Social Feasibility:

% Consideration of whether
acceptable to the peopl
introduction. ¢

5 Describe the effect
system considering
the workforce.

» Describe how you propose to ensure
changes are introduced.

3. Economic Feasibility:

» Economic analysis is the most frequently used technique f,,
evaluating the effectiveness of a proposed system.

» More commonly known as Cost / Benefit analysis, the
procedure is to determine the benefits and savings that are
expected from a proposed system and compare them wity
costs.

» |f benefits outweigh costs, a decision is taken to design ang

implement the system.

Otherwise, further justification or alternative in the proposed

system will have to be made if it is to have a chance of being

approved.

» An outgoing effort that improves in accuracy at each phase of
the system life cycle.

4. Legal Feasibility: _

% This is mainly related to human organizational and political
aspects. -

> Studies are carried out based on the legal perception.

> The political situation and the constitution of the country should
be taken into consideration while performing the legal
feasibility.

1.14 Requirement Elicitation and Analysis. |

It's a process of interacting with customers and end-users to find out
about the domain requirements, what services the system shou
provide, and the other constrains.

It may also involve a different kinds of stockholders; end-users
managers, system engineers, test engineers, maintenance enginee‘s'
etc.

Here are the 4 main processes of requirements elicitation and analys

the proposed system would Proy
e who would be affected by i:

on users from the introduction of the p,
whether there will be a need for ret"aining

user co-operation bef%

v

_—-—-'-/

-

» Software Englneering

1.

2.

3.

P TR ¥ T NS

"3 It can be achieved by giving every piece of fu

: ; :
’ R:,‘W”Erﬂents
i
| scovery

b b

| [
i

[e Requirements N
i specification : 2. Requirements |
T e classification and
L organization

T |

| 3. Requirements |
i prioritization and
___Negotiation

Fig: requi
.'9 The process of requirements elicitation and analysis
Requirements Discovery

» s the process of interactin
r g and gathering th
from the stakeholders about the required sysgter:l

> It can be done usin i i
. 3 some technigues, like interviews,
scenanos, prototypes, etc, which help the slockholdelrs tc;
understand what the systemn will be like.
Requirements Classification & Organization

» It's very important to organize the overall structure of the
system.

requirements

> Putling related requirements together, and decomposing the
system into sub components of related requirements.

» Then, we define the relationship between these components.

¥ “What we do here will help us in the decision of identifying the
most suitable architectural design patterns.

Requirements Prioritization & Negotiation

» It is concerned with prioritizing requirements and finding and
resolving requirements conflicts through negotiations until you
reach a situation where some of the stakeholders can
compromise.

> We shouldn't reach a situation where a stakeholder is not
satisfied because his requirements are not taken into
consideration.

¥ Prioritizing your requirements will help us lat
essentials and core features of the system.

er to focus on the

nction a priority

level.
Software Engineering ®

Scanned by CamScanner

4. Requirements Specification

% This is the last stage of the cycle.

» Al formal & Iinformal, functional and non-funy,
requiremenls are documented and made avallable for “e:?[
phase processing.

Requirement Elicitation Techniques:

ation is the process to find out the r?qu"ementsfu
nicating with client, end usgr,.
ake in the software SVSten;

Requirements Elicit
an intended software system by commu
system users and others who have a st
development.

There are various ways to discover requirements:

a) Interviews:
Interviews are strong medium to collect requirements. Organizatig,
may conduct several types of interviews such as structured, ngp.
structured, oral and written interviews. -

b) Surveys:

Organization may conduct surveys among various stakeholders by
querying about their expectation and requirements from the upcoming

system.
c) Questionnaires:

A document with pre-defined set of objective questions and respective
options is handed over to all stakeholders to answer, which are

collected and compiled.
d) Task analysis:
Team of engineers and developers may analyze lhe operation for
which the new system is required. If the client already has some
software to perform certain operation, it is studied and requirements of
proposed system are collected.
e) Domain Analysis:
Every software falls into some domain category. The expert people in
the domain can be a great help to analyze general and specific
requirements.
f) Brainstorming:
An informal debate is held among various stakeholders and all theif
inputs are recorded for further requirements analysis. ;
g) Prototyping:
Prototyping is building user interface without adding detail functionality
for user to interpret the features of intended software product. It help®
giving better idea of requirements.

» Software Engineering

h) Observation:

A team of experts visit the g

observe the actual working ofii;::tes_organizauon or workplace. Th
Xisti hisad

hi

itself draws some conclusiong whin 1 iNstalled s;
from the software, S Which aid 1o form reﬁui)rfé::nstlszze te::rg
pecte

1.15 Requirements Valigation and Management -

The process of checking the reqyi
equiremant: 4
mpleteness th i nis for realis i
th[!J dpesign the aslﬁ?;teer:]mmeskwmlhe'the'EqUirer::]ﬁlng::'Ste;cty atpc:
is kno p supstantial
management. Wn as requirement validation and

Requirements Validation Techniques
Test case generation:
» The requirements s,
testable.

» The test in the validation
requirement.

|

pecified in the SRS document should be

Process can reveal problems in the

> :Eastumg ti:f;i_s test bte;omes difficult to design, which implies
irement is di i i
ol b is difficult to implement and requires

Automated consistency analysis:

If the requirements are expressed in th
> e form of structured or
formlal notations, then CASE tools can be used to check the
consistency of the system,

» A requirements database is created using a CASE tool that
checks the entire requirements in the database using rules of
method or notation.

» The report of all inconsistencies is identified and managed.

Prototyping:
» Prototyping is normally used for validating and eliciting new
requirements of the system.
> This helps to interpret assumptions and provide an appropriate
feedback about the requirements to the user.
> For example, if users have app_ro\.red a protqkype. which
consists of graphical user interface, then the user interface can

be considered validated.
(o]

T e Software Engiﬂeéﬁﬂﬂ '

Scanned by CamScanner

System Modeling

System modelling is the graphical representation that helps the analyst
to understand the functionality of the system and communicate with

customers.
Different models present the system from different perspectives:

1. External perspective: It represents the system’s context
or environment. g

2. Behavioural perspective: It represents the behaviour of
the system.

3. Structural perspective: It represents the system or data

architecture.
2.1 Context Models)’J

Context Models are the models that show how the IT applications fit into
the context of people and the organization they serve.

> Used to illustrate the operational context of a system.
» Show what lies outside the system boundaries.

- Software Engineering

-

e

I » Social and organjsg

i tional ¢,
where 1o position system boyngurs. "
ries

An example of the context
diagram of the ATM system- odel can be shown using the modelling

ay affect the decision on ‘
|

accounting

I SE_c:r‘i;y]
e System
Branch ‘}' oo
f

| A r—

L i = | database
Auto-teller |

e system .'

! Branch } r' i e

| counter =~ | l [_u'”xg_ B

__fft_m ! database |

| Maintenance _L
system

Fig: The context of an ATM system

| 2.2 Behavioral Models

Behavioral models are the models that are used to describe the overall
behavior of a system.

» Two types of behavioral model are:

"

« Data processing models that show how data is
processed as it moves through the system.
» State machine models that show the systems
response to events.
» These models show different perspectives so both of them are
required to describe the system’s behavior.

State machine model _ |

SRS

|2.2.1 Data Processing Model _]

the modeling diagram that uses the data flow
tem's data processing.

s as data flows through a system.
understand.

Data processing models i
diagrams to model the sys
> It shows the processing step
> Simple and intuitive notation that customers can
I Software Engineering ®

_____’——-‘.—'_’—_’—/_- -

_‘

Scanned by CamScanner

» Show end-to-end processing of data. —
.3 Data Models .

An example of the order processing DPM can be shown as: _ 2
" - - R——— U.m ity
Signed ; o 2
ot it imiom s = ety The models that are used describe { 7
Pl _@_’/‘%. heerd "ffcriy | processed by the system are known 50 dart-l: T;?)%Igfsl BifIctue of dats
onder form \ \, e e . . :
wintom Nt e » An entity-relation-attribute mqge, SEl Bl s aviiilia i
Qe | et Se system, the relationships et S out the entities in the
e order attributes, Ween these entities and the entity
,‘:’I‘_.’%:.'.. » Widely used in database design, :
) & :Il'.uli . 5 .
Toden | [o | » Can read‘ﬂy be 'mF_ﬂEmemed using relational databases.
L L » No specific notation provided in the UML but objects and
associations can be used,
[2.2.2 State Machine Model Q An example of data model can be shown by drawing the Library
semantic model as shown below:
State machine model is the modeling technique that models the [Ancie] e B}
behavior of the system in respanse to external and internal events, lf—__lam:; T Poblishedin Sy
il A ors f——————w blisher |
> They show the system’s responses to stimuli so are often useq e ﬂs:.i:f %]
for modeling real-time systems. i e | pages _{
]
» State machine models show system states as nodes and evenls delivers | 7
as arcs between these nodes. When an event occurs, the n U Y, A
system moves from one state to another. T e 1
; | wnder number | p ety | copyright form
» State charts are an integral part of the UML and are used to | totad payment | B [—’:m .
represent state machine models. ’. Il_;;__gt_.tll.gf_'___g A bt
» State charts allow the decomposition of a model into sub-models.) Lpl..m
|
An example of state machine model can be shown by drawing the state [Buyer
chart of Microwave oven model as shown below: : ?:5@ . ; i
ress v
p:::- <7 Full power :-In!.'\il o
de:ﬂup;;wn b||l|7tg u\nl
\rm Fig: Library semantic model
W N J] Data dictionaries:
®— o - b Data dictionaries:
gt~ e] o i ion describing the contents, format, and structure of
pawer ":'gllmt:m | do :.:;m The set of information e i0 between its elements used to control
- T /] y B e rfa}atmpshlp Thw database are known as data
= [Toiar dovd m/ I access to and manipulation of the
Door 4 an .
B e o dictionaries. :
W penry T *"'“-d ,f". oren ‘<ts of all of the names used in the system models.
| do: set power | Door da: display > Arethelistsof @) .
\ =30) cosed | Ready iities, relationships and attributes
> Descriptions of the entties,
Disabled ™, ;
| do: displey & : : included. dats dictionaries.
N/ ' > Many CASE workbenches SUPPOTT "
. '] L3
Fig: Microwave oven model Software Engineering ®
* Software Engineering : i e T

Scanned by CamScanner

——

Advantages : N
4 Support name management and avoid duplication.

& Store of organizational knowledge linking analysis, desigy, any
implementation.

2.4 Object Models

Object models are the models that describe the system in termg of
object classes and their associations.
> An object class is an abstraction over a set of objects with
common attributes and the services provided by each object,

> Natural ways of reflecting the real-world entities manipulateq by
the system.

» More abstract entities are more difficult to model using thi
approath.

» Object classes reflecting domain entities are reusable acrogg
systems.

Various object models may be produced as:

S

@;nn;am;d;r [gggrggaﬁonmoﬁel J L::::ezc‘hon model_ :
s sl el Par il Saul e o gk Tl e
{2.4.1 Inheritance Model |

Inheritance model organizes the domain object classes into a hierarchy.

» Classes at the top of the hierarchy reflect the common features
of all classes. 3 winll

» Object classes inherit their attributes and services from one or
more super-classes. i

> QIass hierarchy design can be a difficult process if duplication in
different branches is to be avoided,

E * Software Engineering

Library itpm
Cllalr;@.m = ¢
Mok
Acquint
o LN date
Trpe
Status
Mumbey gf topiey
Acquire ()
Catalogue 0
Issue ()
Peturn ()
/lj i
]
et N o
Published item s |
ecorded
‘n‘l!- o tem
Publisher *:-:;
bt A, Medum
—t e
Bock Magazine . Fim Computer
Author Year ! Director program
Edition Issue | Date of relzase Mersion
Publication date | . Distributar Platiorm

ISBN I

Fig: Library class hierarchy as Inheritance Model

[2.4.2 Aggregation Model l
An aggregation model shows how classes that are collections are
composed of other classes.

> Aggregation models are similar to the part-of relationship in
semantic data models.

s i o o - | Number i

1
TIdrl'-‘n:rt:leﬂ'ts Tt d |
| Desaription . Diggrams - ' {
[--—= _ i T e tion model
i 3 it : s f Ob ect aggrega
Fig: Demonstration ©] Software Engineering ® H

.

Scanned by CamScanner

==

[2.4.3 Interaction Model
The interaction model shows the interactions between objecyg o
produce some particular system behavior that is specified as g Use,

case.
» Sequence diagrams or collaboration diagrams in the UML are
used to model interaction between objects:

Medical Receptionist

% .' ¥ P: Patientinfo | | D: Mentcare-DB ; !AS:Authoriz-a;;:;
14 s ') F—E Ry S| PP TRIN rl

& o e I

| 1D

[| Viewinfo (PID) re%ort (Info, PID, | l

uiD) |

'[authorize (Info, |

uID) |

| |

I [
" 1_ | -
[, 1
! | authorization | |
| € = — - — === -
I | L)
alt | : |
[authorization OK] Patientinfo | | [
=S| |
Lt saihe o il st B 2 B 4

[authorization fail]
f I
| ! I

Fig: Sequence diagram as interaction model

2.5 Structured Methods

Structured methods incorporate system modeling as an inherent part qf
the method. .
> Methods define a set of models, a process for deriving these
models and rules and guidelines that should apply to the models.
> CASE tools support system modeling as part of a structured
method. ;
Weaknesses of Structured method:
The weakness of the structures methods can be summarized as:
> They do not model non-functional system requirements.
> They do not usually include information about whether @
method is appropriate for a given problem.

» Software Engineering

» ltmay produce too myc docy

» The system models are s
users to understang

Mentation,

Omet; i
mes tog detailed ang difficult for

2.6 CASE workbenches
A coherent .S?F of tools that is ge
P

» Analysis and design workbe
: = nches support system modelli
during both requirements engineering and sys‘;:m der;gne"‘"g

L

» These workbenches may support a specific design method or

“Iay p O\I’i es pp or Cfeaﬁn i
y T d Ibu ort a g severa dlﬂerenl types of

(/ Data '/_,S""‘d”'e‘j Report
{ dictionary d'ag:amlmi“S generation
N\ 00ls \ facilities /

T \
/ Query A
information language)

/ 2 A

{ Code i

1 nerato! ! x -t

\ g€ r S repository i facilities

Mo e b e ol = o
_/ —~\ |

forms_ . Design, analysis Import/export |
creation : and cheld“ﬂs : faclities |
5 : +
Nyl oo, o o s et

F'Eg: An analysis and design workbench

Central 'i

LZ-7 Data Flow Diagrams (DFD)
. I resentation of the flow
also known as bubble

s a graphical rep

A i Q DFD}i
data flow diagram (or ystem. They are

of data through an information s
charts. .
» Shows how information i
the sources and destinati
information is stored:

L T e

output from the system,

s input to and {where that

ons of that information, 8n

Software Engineering ®

__-‘

Scanned by CamScanner

» Mapsoutthe flow of information for any process or system,

» Uses defined symbols like rectangles, circles and arrows, l
short text labels, 10 show data inputs. outputs, storage DOir::

and the routes petween each destination.

s and Notations Used in DFDs:

Symbol
are named after their creators: -

Two common systems of symbols
+ Yourdon and Coad

& Gane and Sarson

Yourden and Coad Gane and Sarzen

Notation
e N
-y TR !
External Entity L4 ; I

| i]

| S L i3
~ ~ ey
Process lf | e

L £ -
Data Store PR Fhrr
Data Sto LJ.

L]

Rules of DFD:

Rules ol UL
1. Each process should have at least one input and an output,

2. Each data store should have at least one data flow in and one
data flow out.

3. Data stored in a system must go through a process.

4, All processes in a DFD go to another process or 8 d

Basic Terminologies:

Black hole: The situation where the processing step may ha
flows but no output flows is called a black hole. , f
Miracle: The situation where the processing step may have oUlPUf'
flows but now input flows is called a miracle. : '
Grey hole: The situation where the processing step may have outputs

ata store.

ve input

that are greater than the sum of its inputs - e.g., its inputs could not

produce the output shown is referred to as a grey hole.

N » Software Engineering

Different levels of DFD:

wiaior components of DFp:-

pFD

5 are constructed usin

1. External entities glodtim
2. Data stores

3 Processes and

4, Data flows

External entities represent
the so
K - source of data as i
system. They are also the destination of system fialtr;pué:::er:‘;

entities can be called data sto :
represented by squares, res outside the system. These are

Data stores represent stores

of data withi
example, computer files or database Wl:\hm ks
represents a data, which implies store d;;t'a ln oo
repository afdals. at rest or a temporary
Prf}GBSSGS represent activities in which data is manipulated by
being stored or retrieved or transferred in some way. In other
words, we can say that process transforms the input data into
output data. Circles stand for a process that converts data into
information. ;
Data flow represents the movement of data from one component
to ‘lhe olr'\er‘_ An arrow (—) identifies data flow, i.e. data in motion.
It is a pipeline through which infarmation flows. Data flows are
gengrally shown as one-way only. Data flows between external
entities are shown as dolted lines (——1).

ajor components:

DFD levels are
3 or beyond. Th
what you are trying to accomplish.
0 level DFD:

It is also called a Context Diagra
looking into a system thro
whole system or process
be an at-a-glance View,

process, with its relations
understood by a wide @
analysts, data analysts an

-

numbered 0, 1 or 2, and occasionally go to even Level
e necessary level of detail depends on the scope of

m. It shows a glance as if you are
copler. It's @ basic overview of the '
|ed. It's designed 10
a single high-level
It should be easily
ers, ‘business

ugh a heli
being analyzed or mode
showing the system as
hip to external entities.
udience, including stakehold

d developers.

Software Engineering -

‘

Scanned by CamScanner

Upidewn hotel info

F
Royeaicancel nfe
___,_.———-——___-"_"

Gueit inle

H nﬂl '"'ﬂaﬁrn

1 cancellation (~rm

g infe \ 2 G
i
I\ ey druian /"*-«..‘_.
: Jevel DFD: ; - =) >
1DFeD Level 1 provides a more detailed breakogt of pieces of the Conteyy L,_._._-—-qw . \‘_,, Cih
Level Diagram. Here the main functions carried out by the system ap, = \V .
highlighted as we break down the high-level process of the Contey "Nl A Y (/ \1
Diagram into its sub-processes. N e k o\ i |
§ 1 all & o /}__ S
© Reservation i 4 = - o
-"" \ EESEE | |

storage file

Roem
wilection |
process

N

Nt g b
l "“"l'f‘“’___ l Cmtaci e
3 level DFD and so on: ,

Progression to Levels 3, 4 and beyond is possible, but going beyond
Level 3 is uncommon. Doing so can create complexity that makes it
difficult to communicate, compare or model effectively.

Difference between Logical and Physical DFD:
Logical DFD Physical DFD

1. Logical DFD depicts howthe . | 1. Physical DFD depicts how lhe
business operates. - | _ system will be implemented. |

| 2. The processes represent the 2. The processes represent the

| business activities. | programs, program modules,

| __and manual procedures. ____

Repertie
admin

' o - T S . ":', + [- -
| Downsierage. Upscrage: 3. The data stores répresent the | 3, The data'stores represent the
A : | collection of data regardless of physical files and databases,
; 2 level DFD: .__how the dataarestored. | manualfies. .
| 4. It show business controls. 5. It show controls for validating
DFD Level 2 then goes one step deeper into parts of Level 1. It may | input data, for obtaining a
require more text to reach the necessary level of detail about the i record, for ensuring
system's functioning. : successful completion of a
: process, and for system
L' b el security.
o
Gl ' « Software Engineering e e R i Software Engineering '_m

Scanned by CamScanner

Architectural Design

(3.1 Architectural Design Decisions

-

advantages of ex IIciiarchnectu
The advantages of the jrc'h"'“'lu,ar
: » lis used for desi

-

1N €an ba listed as:

2rs com

municat;
yste jon
f51em analysig

the stake,
Itis used for the g old

of whether the Syste
requirements is pawb!: ”

The architecture mg
systems,

W
. :':lchlmaans'lha\ analysis
€8l s non-functional

A framework for salisfying req
Managerial
management,

Quirements,

basis st

for
eslimation & process
» Effective basis for reuse

Basis for consistency, dependenc

Architecture attributes: Y, and tradeoff analysis.

1. Performance: Localize operations 1o minimize

communication sub-system

Security: Use a layered archi : -
layers y chiteclure with critical assets in inner

3. Safety: Isolate safety-critical components

4. Availability: Include redundant components in the architecture

Software architectural design is the design process that deals with the
design and implementation of the high-level structure of software.

>

Identifies the sub-systems that make up a system, and the
framewaork for sub-system control and communication.

> Represents the link between specification and design
processes.

5 Provides well understood tools and techniques. for
constructing the system from its blueprint.

» Often carred out in parallel with some Specifcatmn
activities.

5 Deals with abstraction, decomposition, composition, sls'ﬂe.
and aesthelics.

> Involves identifying major system components and thelf

communications

« Software Engineering

5. Maintainability: Use fine-grain, self-contained components

The architectural design process can be organized into the following
tree:

| Architsctural design procass ;

b i S

| Systemstruct

| Control modaling |

ng | | Mo pesion,|

— ——

[Obisctmodel | | Datamodel, | o i | (e

(3 2 System Organization el

System organization is the structuring method which is cancerned with
decomposing the system into interacting sub-syslems.
> The arghitectural design is normally expressed as 3 block

diagram presenting an overview of the system struclure.

Software Englﬂ&ﬂ'i ng '

B e

Scanned by CamScanner

cific models showing how sub-systems share

More spe b |
» distributed and interface with each other may also pg deyala-i.'- _
s G :
| The example of object model can pe shown a
ettt s

Vision f §
sys!el'ﬂ : [Customer !
PR : customer# | r Receipt
1 :;:::“ | : e i :’::u.
— — [———"% [Tt credit period |] :] Imvaice L amotint
| Object | ! Al’I'I'I“ ! Gripper | ot |) invoicen ' customern
identification ——> | controller | | controller | B I e
| sys‘tem | — RTTTEST T "_'_‘*——-J P ';—"_1 ;"""—-w : I t\.l::m'er I -I
b e] o5 f | ol | - —| issue) :
A ' invoice® | sendReminder () [
| date [=~ > acceptPayment ()]
| amount JI sendReceipt () Fi
_ T I stomer# R e—————
| Packaging | [e T
| selection | Fig: Invoice processing system as object model
system ’ i
e il | [3.3.2 Data-flow Model
> A data-flow model is the model where the system is decomposed into
. SRR R functional modules which transform inputs to outputs.
| Packing | | Conveyor i 5 Also known as the pipeline model.
__Smem | g _ff_rjt_m_l_lfrr_ [» Functional transformations process their inputs to produce
" outputs.
') > May be referred to as a pipe and filter model (as in UNIX shell).
Fig: Packing robot control system » When transformations are sequential, this is a batch sequential
: madel which is extensively used in data processing systems.
| 3.3 Modular DECOI’HpOSitiOI’I StYIQS » Not really suitable for interactive systems.
The example of data-flow model can be shown as:
The architectural design process where the sub-systems at b WA
decomposed into modules is known as modular decomposition '_"'-‘_[==='ﬂ"_.-}-';+ftg_fi__j
architecture. ' [‘R;_;{;_s'm}‘ v dentiy Y
Two modular decomposition models can be covered as: R el | i Lo\ M
{ Find : \—» Reminders
(popens Jo{ pomen o) Rmeie |
[3.3.1 Object Model | sid® s \ e g NI e
Imvoices ‘_ ' Paymn?}
The model where the system is decomposed into interacting objectss e i
: . ; = odel
known as object model. _ Fig: Invoice processing system as data-flow m
> Structure the system into a set of loosely coupled objects wih
well-defined interfaces. 3.4 Control Styles
5 ; ; I pi o ; ich Is concerned with the control flow
> Object-oriented decomposition is concerned with identifi™ | The modeling technique Whi trol modeling. Control styles are
object classes, their attributes and operations. between sub-systems is called as can
» When implemented, objects are created from these classes and | classified as::
* some control model used to coordinate object operations. Control styles are classified 85 Software Englneering B
* Software Engineering e

Scanned by CamScanner

1344 Centralized control
responsfbility for control ang -

stem has overall
and stops other sub-systems.

» A control sub-system takes respo
execution of other sub-systems.

a, Call-return model
Top-down subroutine mo
subroutine hierarchy and moves d
sequential systems.

b. Manager model
urrent systems. One system COMpongy

It is applicable to conc one
tarting and coordination of other Systen

controls the stopping, S ()
processes. It can be implemented in sequential systems as a cag,

statement.
[3.4.2 Event-Based Control :
> Each sub-system can respond to externally generated event
from other sub-systems or the system's environment.

> Driven by externally generated events where the timing of the
event is out with the control of the sub-systems which process

the event.

a. Broadcast models

An event is broadcast to all su
handle the event may do so.
b. Interrupt-driven models
!l is used in real-time systems where interrupts are detected by an
interrupt handler and passed to some other .component fof
processing. The event driven models include spreadsheets a

» One sub-sy
nsibility for managing b

del where control starts at the top
ownwards. It is appucﬁb[e;

b-systems. Any sub-system which can

production systems.
3.5 Reference Architectures]

fhe model used as a basis for system implementation or to compare
different systems is known as reference architecture.
> Dgrived from a study of the application domain ra
existing systems. :
> Itacts as a standard against which systems can be evaluated
> OSl model is a layered model for communication systems.

ther than fm‘n_.

* Software Engineering

7 | Application —
— | Apphicati k
6 | Presentation | X (anon ;
= | Presentat;
5 Session — _‘T‘.m 4
IJ | Session [
4 | Tansport l !
H | Tanspont
5 Hetwork | Network |
2 Data link f l
ata lin T |
Dat |
. Data link | Datalink
1| Physical | Physical | =i
| Communications medium 1

Fig: OSl reference model

3.6 Multiprocessor Architecture

The Simplest distributed system model in which the system is
composed of multiple processes which may execute on different
processors Is called as multiprocessor architecture.

> Architectural model of many large real-time systems.

3 Distribution of process to processor may be pre-ordered or may

be under the control of a dispatcher .

Contral room
processor

Sensor Conudination

v
processar and display processat i
— i process . - e
T sensar / e " Light if-—/l

| Master 4 control |
L process Hpmees [I
T s b i . \??' |

s Dp!ma consoles

Traffic ight cartrol e

cantrol |

Traffic flow sensors and
cameras

Fig: A Multiprocessor Traffic Control System

3.7 Client Server Architecture
which the server

uting model in

s a comp
the resources @

most of nd services to be

Client-server architecture i
hosts, delivers and manages
consumed by the clients.
> Consists of one or more
server over a network or
in resources. . .
> System shares computing ofouare Engineering .

client computers connected to @ central

Internet connection.

Scanned by CamScanner

» Referred to as a networking computing model becausp all
requests and services are delivered over a network, the

% Servers are powerful computers or processes dedicate, d
managing disk drives, printers, or network traffic.

5 Clients are PCs or workstations on which users
run applications.

(" chent1) Client 2 [cients) (clienta)
s I - .. S I e el I =
| Internet
PN N T N

senver | server server | server 1
Library Photo store J | Film and

\ ia) Film store |
._E ﬂ.D’FBE. 3

‘.. photo info, ’.-’
ey sty

Fig: clienl-server architecture for a film library

[?7.1 Layers in a Client-Server System l

.,

<+ Presentation: concerned with presenting information to the
user and managing all user interaction.

< Data handling: manages the data that is passed to and from
the client. Implement checks on the data, generate web pages,
etc.

<+ Application processing layer: concerned with implementing
the logic of the application and so providing the required
functionality to end users.

% Database: Stores data and provides transaction management
services, elc.

| Presentation |

M s A"

[———— —

4 ! Data handling

Application processing |

I e
! Database }

Fig: Layered architectural model for client-server applications

* Software Engineering i

moreover the client-seryer arc

: ‘ hite
orsover i Clure can pe Classified as shown §
I nin
e
Uulumrauqunhn |
o
|| o ter archy _-‘J i |
T Archnectury L}ln_._(:.rmhﬂun
I 1
l,l".‘ﬁ."‘“"‘ | ;l'.f.'_“?'.---

3,7.2 Two-tier Client Server Architectures

| -tier client servar architecture the s m is implem
n, fwior ; ! ' ystem is i plemented as a
smglg]ogmal Server DlUS an indefini m i

oy definite nu ber of clients that use that

Thin-client model:

» Inathin-clientmodel, all of the database, application processing
a_nd data manalge_men\ is carried out on the server. The client is
simply responsibie for running the presentation software.

» A major disadvantage is that it places a heavy processing load
on both the server and the network.

Presentation
¥ 1 Sever |
rh:"::::'“ Bt fa— — o Datshase
L h Data msnagemert
i Apgheation processing |
Presentation
. hpplication pracessing et ey
- . Server
Fat-elient ' y 3
model et | oo Database
Dita management
g i B
Fat-client model:

= : .
% In this model, the server is only responsible for data
management and database functions. .

> The software on the client implements the ap
the interactions with the system User. il

» More processing i delegated to the client as the ap
processing is locally executed.

i client-server
» Most suitable for new
capabilities of the client system aré known

PR odel,
» More complex than the thin' client ™
management.

plication logic and

systems where the
in advance.
especially for

Software Engineering 8

Scanned by CamScanner

[3.7.3 Three-tier client server architecture

% In three-tier architecture, each of the applicali$

ey
layers may execule on a separale processor, turg

» Allows for better performance than a thin-client approae
simpler to manage than a fat-client approach.

% A more scalable architecture - as demands increase
servers can be added.

Tier 1. Presentation

hanqk

" EXiry

T
|_\ dient | pr7ps interaction
"

£ ..=_ ~Wab seiver | | Database Sew_gﬂ

\ ; \‘H""“-u,q___l . —| sQLquery P
D Account service r_.— saL -achcf:Lni:

150 nl

e : // provision i database

{ ciient " o e

b Tier 2. Application Tier 3. Database
processing and data processing

) ' management
| Client |

Fig: An internet banking system as three-tier C/S archilecture

I3.7.4 Client-Server Characteristics

4

Advantages
<+ Distribution of data is straightforward

< Makes effective use of networked systems. May require cheaper
hardware

Y

 Easy to add new servers or upgrade existing servers
Disadvantages
“ No shared data model so sub-systems use different data
organisation. data interchange may be inefficient
Redundant management in each server
No central register of names and services - it may be hard to find
out what servers and services are available

]is Distributed Object Architecture = l

Itis the system architecture where each distributable entity is an Dﬁfed

‘*;3_‘ provides services to other objects and receives services from other
objects.

o

5 * Software Engineering

5 There is no dis i
7 nelion jn giays
. il .
between clients and Servers, Stributed opjecy architeciures
organise the system_
» Object communication js ji,
object request broker,
» However, distributed gb; i
» \ object
design than C/S systems rehiteclures are more complex lo
3 The ORB (object request brok
knows of all abjects in the s
B e,
el | | o2 | 03 (=

| | | o

r "
ough a middleware system called an

ert} handles object communications. It
¥slem and their interfaces,

t i | |
| SNt | 1
i | = %_{03} ! |1 5 (o4)

Object request broker

|ses | S0 |

Fig: Distributed objec! architecture
Advantages of distributed object architecture:

4 It allows the system designer to delay decisions on where and
how services should be provided.

< |tis a very open system architecture that allows new resources
to be added to it as required.
% The system is flexible and scalable.

-,

% Itis possible to reconfigure the system dynamically with objects
migrating across the network as required.

Disadvantages of distributed com onent architecture:

& Distributed component architectures are difficult for people to
visualize and understand. .
They are more complex to design than client-server syslems,s
Standardized middleware for distributed Icomponent system
has never been accepted by the community-

Distributed Computing

o

e

3.9 Inter-organizational

d inter-operability re@
Software Engineering -

S0NS.
> Used for security an

b e L e o oo

Scanned by CamScanner

> Local standards, management aqd o_perational processes .
for such inter-organizational distribution computing. Pply
Newer models of distributed comput}ng have been de?'igneﬂ
port inter-organizational computing where different nwtu
d in different organizations. ey

>
sup|
are locate

3.10 CORBA-Common Object Request
Broker Architecture

CORBA is an architecture and specification for creating, distributp,
and managing distributed program objects in a network. g
5 |t is an international standard for an Object Request Broke, _
middleware to manage communications between distribytey

objects.
Allows programs at different locations and developed by

different vendors to communicate in a network through ap
“interface broker.”

Developed by a consortium of vendors through the Object
Management Group (OMG), which currently includes over 500
member companies.

Eacilitates the communication of systems that are written in
different languages and deployed on diverse platforms.
Enables collaboration between systems on different operating
systems, programming languages, and computing hardware.

. _ pilves

Application | Domain fi [Horizontal CORBA |
I facilities | | facilities '
]

objects
o of Lo @

| i‘\-"‘ o |

Object request brakes _}

CORBA services ']

Fig: CORBA application structure,
o]

* Software Engineering

Real-time Software
Design

4.1 Real-time Systems \
A real-time system is a software system where the correct funclioning
of the system depends on the results produced by the system and the
time at which these results are produced.

% Time is critical so realtime systems must respond within
specified times.
» Systems which monitor and control their environment.
> * Inevifably associated with hardware devices:
& Sensors: Collect data from the system environment
& Actuators: Change the system's environmentin some

way

Software Engineering *

Scanned by CamScanner

The real time system can be classified as:
A. Soft real-time system:

A soft real-time system is a system whme Operatjq
degraded if results are not produced according to th
timing requirements.
Hard real-time system:
A hard real-time system is a system whose o
incorrect if results are not produced according to
specification.

es n i3
Pecifig d

Peratig, .
I
the Ijminz

— “ %
Sensor | | Sersor | | Semsar Sensor Sensar Sensor
Ry

-
cantrel system |

%

Actustor \ Actusior [Actuater | Actuatar

Fig: An embedded real-time system model

System elements:

% Sensor control processes: Collect information from sensors.
May buffer information collected in response to s sensor
stimulus.

Data processor: Carries out processing of collected
information and computes the system response.

Actuator control processes: Generates control signals for the
actuators.

. Sensor | Actuator |

. o
J’Sn‘mulus } Response

Sensdr Y Data 3 e Actuater
contral 3 processor control

Fig: Sensor and actuator processes

B.Z System Design

4

System Design comprises of both the hardware and the softwaré
assaciated with system,

* Software Engineering

Design decisiong shouly
system requirernents.
Hardware delivers better

development g Performay,
p nd less SCope for cha“;z but Polentially 1onger

be mag on th, -1
e i
the basiso non. fuﬂCUO al

Identify the stimuli to pe

i Processeqy and the required fesponses
each stj

Far stimulus and Tesponse, identify the timi i

Aggregate the stimulus gng i,

'BSnonse processing
concurren r

neurrent processes, A PrOCess may be 5 Processing into
class of stimulus angd response ssociated with each

Design algorithms to
response. These must

Design a scheduling s
are started in time to

Integrate using a real

; class of stimulus angd
meet the given timing requirements,

ystem which wiil ensure th;
; at pr
meet their deadlines, ey

ime operating system,

ﬁ.z.z Timing Constraints

]

Timing constraints may require extensive simulation and experiment *

to ensure that these are met by the system.

» May mean that certain design strategies such as object-oriented

design cannot be used because of the additional overhead
involved.

* May mean that low-level programming language features have
to be used for performance reasons.

|£.3 Real Time system Modeling |

The effect of a stimulus in a real-time system may trigger a iransition
from one state to another. . .
> Finite state machines can be used for modeling real-time
systems. .
> However, FSM models lack structure. Even sim|
have a complex model. .
The UML includes notations for defining state ma

ple systems can

chine models.

Software Engineering ®
_-'__'—-—————'—'__-___—__-__-_

Scanned by CamScanner

sertad .
e regder < Reading
e ¢ it
s 6o wutiak
L rplay

/ Hose out of holster

Hose in

£ wmalmeg

hodsrer
| Defvenng

—_— e

Mozl deleeer e

i 0% update f\,!,\, |
Nozrie trpges oty

1
Stopped Nente ity

SRS 1 -) P PR |

CC aceonrt holser

Fig: Petrol pump state model

E.3 Real-time Operating Systems

_3

Real-time operating systems are specialised operating systems which
manage the processes in the RTS.

= Responsible for process management and resource allocation,

» May be based on a standard kernel which is used unchanged or
maodified for a particular application.
» Do not normally include facilities such as file management.
Operating system components
1. Real-time clock: Provides information for process scheduling.
2. Interrupt handler: Manages aperiodic requests for service.
3. Scheduler: Chooses the next process to be run.
4

Resource manager:
resources.

Dispatcher: Starls process execution,

Allocales memory and processor

» Software Engineering

Wtemapr |
handier

Process testurce |
_ Tequiremensg
-

Processes L] T — ——
avasiting Resource Mailable
resources ““d"égrr _"___ resource

¥ Bt

Ready Released r.
Processes resources

 — Dispatcher | e}

i
|

v
Executing procese
Fig: Components of a real-time operating system

Difference between real time OS and non-real time 0S:
Real lime 0S8 " Non

Non-real time OS"_ o
1. A real-time operaling 1. A Non-real time OS or
system is an operating General purpose 0S is the
syslem intended to operaling system made for
serve real-time applications high end, general purpose
that process dala asitcomes | systems like a personal
in, typically without buffer | computer, a work station, a
| serversystemete. |
| 2.Itis not deterministic. ___|
: 3, Itis time insensitive. . "]
| 4. Itcan use virtual memaory
__concepl. gL :
|5, Itis dédicated to single work. 15, tis used in rmm-user \

| jronment, .- J
| N T R O enyiror =
i 6. It has flat memory model. | 6. Lhas protecled memory \

| model ,AX

—[7 1t has hi h_gh mlem.lpt
goftware Engineering ®

|3 Itis ime sensitive.
| 4. It can't use virtual memory.

—e

7. Ithas low interrupt atency.
s

Scanned by CamScanner

[m Control Systemsg

f real-time systems which contin L
tis an important class of real-tim e
;;rrs-s;:s[arfgrake actions depending on sensor values sp,%_l

| 4.4.1 Monitoring Systems

i d report the
h examine 5ensors an o
':'.a:i‘:lg Burglar alarm system as an example of momlunng Sﬁle:a%
» The system is required to moniltor sensgrs on do. "
windows to detect the presence of intruders inahy
When a sensor indicates a breakjin, the System Switg
lights around the area and calls police automat:’cauy' S5,
> The system should include provision
mains power supply.
Sensors

for Operatign M"'Ibq
H

Movement detectors, window sensors, door sensors

< 50 window sensors, 30 do

or sensors and 20g Mover,
detectors

= Voftagp drop sensor
Actions
< When an intruder is detected, police are called aUtOmaticaﬂy
Lights are switched on in rooms with active sensors
An audible alarm is switched on

The system swilches automnatical|
voltage drop is detected

Door sensor 7

process

/" Control panel o
process > Tesling process

T } System
Voltage monitor controller

Pmcess/' :]
Window sensgr ™
process J

" Aadible alarm
PI’DC&SS

Movement
detector process
‘\k . - ’

— ./ Consale display\)

. Process)
SR
\;‘f’ower rnanagemeﬂi]
i

ittddn i,

(" Lighting control ™
. _ process
Fig: Burglar alarm s

Ei;t-;mal alert
process

ystem processes
m * Software Engineering

i
|}

|1

iding ® &

¥ to backup power when g |

4.4.2 Control SYstems

t takes the sensor valyag and eongroqe

Is

A burglar alarm System jg o

collects data from SENS0rs by

» Control systems are simitg,
the system sends control

An example of a monitring 5

monitors temperature ang Switel
500 Hz

harduarg

nr::ar,l- a MaNitoring System. |t

. realtime Actuator contre

- u‘l, N response 1 sensor valyes
gnals 1 luatgrs I

"d control systam |
M is a e AT 4
hes heaterg on and GTF_ syslem thay

- Btluatorsy

Sensap

Thermﬂ'i;et_ ™
. process

Switch command
Raom number Thermestat process

]

Heater contral
process

Furnace
control process

Fig: A temperature control system

|4.5 Data Acquisition Systems

Data acquisition system (DAQ) is an information system that consists
of DAQ software and hardware along with sensors and actuators for the
collection, storage and distribution of information. :
> Used in industrial and commercial electmmcs;. :2:1
environmental and scientific equipment to 5301”;'32:;“
signals or environmental conditions on a comwuielf - fg-m-. b
> The hardware typically coneiei i mmﬁne;ir::cted to the
external expansion cards “fh‘d..' c'ar:erface such as a PCl or
computer through a communication |
tss, Software Engineering
== R SN =

Scanned by CamScanner

$ The hardware is connecled with an input device such a5
scanner or analog-to-digital converter. a 3y

» The signal from the input device is sent to the hardwarg 4_
which processes and sends it to DAQ software, wheg, Vicg,
recorded for further review and analysis. ®ily

» A data acquisition system is also known as a data logger.
A typical system consists of:

« Data acquisition (DAQ) hardware

« Sensors and actuators

« Signal conditioning hardware

« A computer running DAQ software

The block diagram of the data acquisition system can be shown ag.

Fig: Block diagram of the data acquisition system ~
[

E * Software Engineering

Software Reuse

3.1_ Reuse of software \

Reuse-based software engineering is one of the software engineering
strategies where the development process is carried out reusing the
existing software.

Reuse-based software engineering
Reuse may be in different sizes from program fibrary lo entire
program. It is classified as per the degree of reuse:
% System reuse: Complete systems, which may include several
application programs may be reused.
< Application reuse: An application may be reused either by
incorporating it without change into other of by developing
application families.
% Component reuse: Compcneg\s of a:dap
systems to single objects may be reused.
’ Ve S g :) .Smi I-scale software components
%+ Object and function reuse: ma B o funcion may be
that implement a single well-defined obje

reused.

plication from sub-

software Engineering 'm
esladan asoon ettt

Scanned by CamScanner

Advantages of software reuse

1. Increase software productivity.
Shorten software development time.
Improve software system interoperability.
Develop software with fewer people.
Produce more standardized software.
Product_?_ better quality software and provide g Powg
competitive advantage.
Disadvantages of software reuse

1. Needless complexity.

Inflexible design will cost too much to modify.

ook LN

g

2
3. Domain irrelevance.
4. Inadequate documentation, training and awareness.
5. Increased development, testing, and maintenance costs,
6. Lack of tool support.
Reuse planning factors
Following are the factors that influence the reuse of the softwarg
components:
< The development schedule for the software.
% The expected software lifetime.

» The background, skills and experience of the development
team.

#. The criticality of the software and its
requirements.

% ' The application domain.
< The execution platform for the software.

non-functional

[5.2 The Reuse Landscape

> Although reuse is often simply thought of as the reuse of
system components, there are many different approaches to
reuse that may be used.

> Reuse is possible at a range of levels from simple functions 10
complete application systems. ‘

> Many techniques have been developed to support softwar
reuse.

> The reuse landscape covers the range of possible reuse
techniques.

* Software Engineering

=

concept reuse

When You reuse program or des;j
the design decisions made by the

This may limit the opportu

7

r

The two main approaches to concept reuse are:

5.3 Design Patterns \

Drvgn

Patimmyg Methinmyey
* Applicatian e
Sy
framewariy e producy
- Hppte
Syteens ol " e ""'“:.::-u [T T
syvtemy Coed; .
BPplication sy LEEIY Byrtem,
Companent bayed g
saltwire engingering ‘:::"I-u-m o
i TR
w;:fm'“'."““’ - " el
e engineeing gy Cl0Wem

Timaie,

Fig: The reuse landscape

n
gr_ tomponents, you have to follow
! Egmal developer of the component
. nities for reuse,

owever, a more abstract form i

. of reuse is concept n
! ; euse

a d';"m:é"ari approach is described in an in?ipiemen\::t‘izg
independent way and an implementation is then developed.

Design patterns
Generator based reuse

Design pattern is a general repeatable solution to a commanly oceurring
problem in software design.

7

» Reusing design patterns helps to im
coders and architects familiar with the patterns.
» This should be sufficiently abstract so that it can be reused in
different system seftings. .
> These pattems often rely on the chalraciensh? Ic:: the object
characterized by the inheritance and polymorp IZ ﬁ e
4 2 [T
> A template for design solution can be reused in diffe
but not a concrete design: .
e R B gl Software Engineering '@

A design pattern is not a finished design that can be
transformed directly into code. Rather, it is a description or
template for how to solve a problem that can be used in many
different situations.

Design patterns can speed up the development process by
providing tested, proven development paradigms.

prove code readability for

Scanned by CamScanner

Design Pattern Elements

< Name: A meaningful pattern identifier,

+ Problem description: The complete descy| i
problem to be addressed. Plion
< Solution description: Atemplate for a desigp,

be instantiated in different operational
concrele design. It is often illustrated grap| Ny
« Consequences: The resulls and trad . i
pattern. It includes the analysis and exp PPlying b
Example: The Observer pattern |

% Name: Observer

% Description: Separates the display of object state .
object itself allowing alternative displays, ® from
* Problem description: Used wi
are needed.

Solutjg
Contexy, It n' th
hlcaily, 8
e-offs of
erience.

\
Elk

hen muiltiple display of 8

|
Cription,

C enhang
splay are impractical. ° 8

Solution description: It is based on the UML desg

7+ Consequences: Object optimizations to
.perfonnance of a particular dij

r (S}

f——
| Observer1 | | A ’ [

| ! | A: 40 d b

! r‘_ll g : [Observer 2
- L

g | C15 I

Ir' D: 20

Fig: Multiple displays using observer pattern

5.4 Generator Based Reuse

The program i
algorithorgs_ generators involve the reuse of standard programs and

These are embedded j
in the
Command and a py, il

ogram is then auto

and parameterized by.the use'
malically generated.

* Software E"Qh‘leerlng
__-___'—-—-—__________._—._F‘.. 2

» Generator-Bagaq , i
and their m o8 18 posyi
f -~ MAPPING 10 gxpeypapye 0 #hen domain absiraction

<. A-doraln specific e Codn can e identified,
these abstractions, 0% 13 Used t compeey and control

Types of program denerator:
1. Application generator for businegs dat.
: : B35 data pr
2. Parse and lexical analyzer generator for lan
3. Code generators in CASE 1o/ e

Generator based reuse is Very cost effer
. : o : R—
limited to a relatively sma) number of applicalfiint;nm;\;:g St
It is easier for end-users 1o develop pro
compared to other component based

DC‘!'S‘;W‘.Q

processing

3rams using generators
approaches tg reuse,

(5.5 Application Frameworks

An application framework is a softwar
fundamental structure to support the devel
specific environment.)

e library that provides a
opment of applications for a

» It consists of a software fram
developers fo implement the
application,

ework used by software
standard structure of an

» Became popular with the rise of graphical user interfaces
(GUIs) since these tended o promote a standard structure for
applications.

» Programmers find it much simpler to create automatic GUI
creation lools when using a standard framework since this
defines the underlying code structure of the application in
advance. |

» Developers wusually use object-oriented programming
technigues to implement fram ewo_rks such that {he_ unique par}:
of an application can simply inherit from pre-existing classes|i
the framework.

Framework classes
i te and abstract
Frameworks are imp!er_nenleq asa CO"EC‘:':: rrTn ;ﬁ;ncrgi e oo,
object classes in an object-oriented progr
are language-specific. _
» There are frameworks avaia
object-oriented pmgrammmgu
well as dynamic languages

i ly used
ble in all of the common
languages like Java, C#,C+t,as

ch as Ruby and Python.

Software Engineering * E

i L

Scanned by CamScanner

|

In fact, a framework can inf:orporate several othg, s
where each of these is designed to support the deue?m%
part of the application. onrnh‘q'-
We can use a framework to create a complete

implement part of an application, such as th
interface.

The three classes of frameworks:

1. System infrastructure frameworks

These frameworks support the development of system
such as communications, user interfaces, and compilers
2. Middleware integration frameworks |
These consist of a.set of standards and associated object ¢ as
support component communication and information Exsﬁs » I
Examples of this type of framework include Microsoft's e
Enterprise Java Beans (EJB). These frameworks provide sunr. |
standardized component models. PPort , |
3. Enterprise application frameworks

These are concerned with specific application domains such
3

»

applicat-
& Qraphilc;" :':.:'l

mfragtm
CILI.I'E3 |

telecommunications or financial systems, These embed applicah-s !
on

domain knowledge and support the development

: of &
applications. s

EG Model-view—controller (MVC)

The Model-View-Controller (MVC) is an architectural pattern thal
separales an application into three main logical components: th
the view, and the controller, & I
~ Each of these components js built
development aspects of an application,

MVC is one of the most frequently used industry-standard web

development framework to create scalable and extensible
projects.

to handle specific

Itdivides a given software application into three interconnected
parts, so as to separate internal representations of information

from the ways that information is presented to or accepted from
the user,

v

Traditionally used for desktop graphical user interfaces (GUIs)

this architecture has beg igni
ome extremel signing
web applications. i

E' Software Englneen’ng
___'—————.____________—-_'-___’.,.

Usa
inputs

“r

Mode

e

>

» For example, a Customer

View

» The View component

» For example, the Customer view will include all the UI

Con

"
Comtrolig gegry
3 T el Son
Mty
Controller mathegy ————o i

—

|
Modei edits |

L Madal e

Mede! rtheds

Fig: The Model.
I = Vueu-(:rmtro!ler Fattern
The Model component Corres;

that the user works vy, > 2 2/ e data-related logic

between the View and ¢
; -V ontroller
business logic-related data, Fopanents or any oter

. : object will retrieve the customer
information from the database, Manipulate it and update it data
back to the database or yse itto render data,

Vie is used for all the Ul logic of the
application.

components such as text boxes, dropdowns, etc. that the final
user interacts with,
troller
~ Controllers act as an inlerface between Madel and View
components to process all the business logic and incoming
requests, manipulate data using the Model component and
interact with the Views to render the final output.
For example, the Customer controller will handle all the
interactions and inputs from the Customer View and update the
database using the Customer Model.
The same controller will be used to view the Customer data.

v

re

E-'*’ Application System Reuse

—

Applicati stem Reuse involves th integrating two of
bs pclc:;:ftig:raé a system for an environment or by intedr .
more system to create a new ap

R e e .;

os the reuse of entire application either

plication.
Software Engineering B

Scanned by CamScanner

There may be two approaches for applicaticm system [e|_|5e' The
¥

duction integration) However, change tgns 4, o

[5.7.1 COTS produc ol oy ATSIaNCES are gy, 2PPlcati

; usually com ificull to create 4 S10ped, it p,
COTS (Commercial On The Seh;l_ irebenem:r o fpfete appi design a generic Drnd?:gv
system that often is an APl whic aster appjo » This involves ideniify
development at lower cost. °é1|;,1 5 Enhf\"lngl comman
E-Procurement System is one of the examples of COTS Produg e used for future dwemg this in a ba
%

N structure $0, as

! . Cons, Mes increasing
Sug ==nghy

line may then be mna“dyé a decision to

instances and ings oy i func_tional".ty N product
et eaupllcaiion,whlch 15 then

‘ . » This base application j
‘ e r and reconfiguration,

| el] E-mail Sysr:m_i s
‘ Web Browser | = -

ER— Conﬁgura{io:
Planning Tog| |

-

| o ——

APy i s I Te————— 1 Cenerig Syst
E-commerce | I L | Ordering and | —— ~ENENE System
System ' Adaptor I | Invoicing System Configuration L | — —
L L } —— L Database § 5 L—"Li:__}f

i _'_'_r"_' | s it
| - e -
-_[:I_E-m ail Sys.te___j—'lr Adaptor l] r —i——-__L

System Database
M i e i Gl

Server

Fig: E-Procurement System Fig: ERP system

o}
‘ 5.7.2 Product Line Development !

A software product line is a sel of applications with a comman
architecture and shared components, with each application specialized
to reflect different requirements.
» The core system is designed lo be configured and adapted o
suit the needs of different system customers.

» This may involve the configuration of some components,
implementing additional components, and modifying some d

the components to reflect new requirements.

Software product lines usually emerge from existhd
applications. That is, an organization develops an application
then, when a similar system is required, informally reuses co%
from this in the new application.

The same process is used as other similar applications &
developed.

: Software Engineering '&
SRR =
E * Software Engineering

Scanned by CamScanner

Documentfxd: Componenls ha:
that potential users of thg g
not they meet their neegs

mpoﬁem interfaces
co

~omponent has two related interfaces They g
G d - H

Requires interface —

pefines the senices . | | Provides intertyey

dand 7 | e s

(hat 378 needed E:‘j I Companent go Defines the senices

T ouid be provide) 1 e that are provided

sho mpanents] D byt

py othe? i L '8 COMpanent
L Q10 other componens

Fig: Component interfaces
Provides interface: Defines the gary;
vice: i
PSR D oot s that are Provided by

Requires interface: Defines the sen
; ces th: "
services must be made available for the com al specifies what

ComponenT' based as specified. ponent to execute

gExample

SOfTbvar‘e Engineer‘ing Requires interface o ovidesinterace
|
| I! —(addSensor
sensorManagement ——— ——{) removeSensor
| 'I—O startSensar
‘ 6.1 Com ponents j | Datacollector L——Q stopSensor
F :) - sensorData >——— Ly testSensor
A component is an independent executable entity that can be made up L——Q initialize
of one or more executable objects. '. O report
Component Characteristics ; R 0 tam
Fig: A model of a data coliector component

& Standardized: Component standardization means that a
component that is used in a CBSE process has to conform lo
some standardized component model.

6.2 Component Models
% Independent: A component should be independent — it should L PO 4\

be possible to compose and deploy it without having to use A component model is a definition of standards for- component
other specific components.

implementation, documentation and deployment. el
< Composable: For a component to be composable, all external ¥ It specifies how interfaces should be defined Iand the ele
interactions’ must take place through publicly defined that should be included in an interface definition.
interfaces. ; Examples of component models
% Deployable: To be deployable, a component has to be séi- " rise Java Beans)
contained and must be able to operate as a stand-alone entity * EJB model (Enterp

* Software Engineering

Software Engineering ‘H

R Ty =

Scanned by CamScanner

COM+ model (NET model)

-
& Corba Component Maodel
h) cBSEfar
EIOI’“EN‘S Of a componen! rl"lOdE' | ‘- - reuse (4373 wth 1 Sperfi
1. Interfaces) ?nm"-""_ ,,_.‘_.W -r:;_:- D E;:':.:Zi, |
Components are defined by specifying their interfaces. The com o E?‘m'lﬁr;,jc,,.n{, | Mok
model specifies how the interfaces should be defined and the glep, By | ictaet, ——— CoTgonen ——
such as operation names, parameters and exceplions, which Shou:d , parket ar Mision — : ;_Mu_ \
included in the interface definition. . be — / ! b
0 Component Y " Componen " b |
2. Usage =, certification] i o) O O T
In order for components to be distributed andlaccessfed remotely, | coator - 1) seco|
need to have a unigue name or handle associated with them, Thjg ha: | extemal e
i 1 1k &nt
to be globally unigue. centifier |
3. Deployment . |
The component model includes a specification of how Components L T
should be packaged for deployment as independent, executabl
entities.

Types of CBSE processes

ol Customisation . . CBSE for reuse

m:i:;:i n This process is concerned with developing components o service
will be reused in other applications. it
Composition Daocumentation 2. CBSE with reuse
| Interface Specific Meta-data Packaging | Evolution This process is the process of developing new applications using x
| definition interfaces access support existing components and services. This involves:
» Developing outline requirements.
T _‘U.sgée_ i ;_Ea;ﬁént +« Searching for components then modifying requirements

¥ | |
[Interfaces | |

m— {-- information - and use according to available functionality.

Searching again to find if there are better components that meet
the revised requirements.

= Composing components to creale the system.

i | o Component model | f
: |

Fig: Basic elements of a component model

-

e e ~ -, / . \\

7 outline N J/ - fas | ﬁfmﬁlﬂb 1

’ 6.3 The CBSE Process [system | Wentiycanddael o PR et |
\ requirements / ‘\ COmpONEnts i \ :g—npmgnt-s_-/ /

i L i P - — i -r - i

Component-based software engineering (CBSE) is an approach 10
software development emerged from the failure of object-oriented
development that relies on the effective reuse of software. ~

T) R =% N /7 compose
| Architectural { 1dentify candidate | components 10
k design 4 components | oeste s\mm /
........... -.—” S 3 ST
Fig: CBSE with reuseé E
; o
 Software Engineering _ e Software Engineering

S ler e =iV g M sy

Scanned by CamScanner

Case study: Arlane launcher failure .

v In 1996, the 1st test Might of the Ariane 5 rocket gp,
disaster when the launcher went out of control 37 secmda; n
takeoff. ey

¥ The problem was due o a reused compaonent from a Prey
version of the launcher (the Inertial Navigation Syslem‘ Il%
failed because assumplions made when that companep, v:mt
developed did not hold for Ariane 5. ay

v The functionality that failed in this component was not reQuireg

in Ariane 5.

[6.4 Component Composition

The process of assembling components to create a system is known a
Component composition.
» Composition involves integrating components with each offg,
and with the component infrastructure.
> Normally you have to write ‘glue code’ to integrate components

Types of composition

4 Sequential composition: where the composed components
are executed in sequence. This involves composing the
provides interfaces of each component.
Hierarchical composition: where one component calls on the
services of another. The provides interface of one component
is composed with the requires interface of another.
Additive composition: where the interfaces of two
components are put logether to create a new component.
Provides and requires interfaces of integrated compenent is a
combination of interfaces of constituent components.

’,
£

-,
o

Glue code
The code that allows components to work together is known as glue
code. Glue code may be used to resolve interface incompatibilities.
If A and B are composed sequentially, then glue code has'to caFFA.
collect its results then call B using these results, transforming them into
the format required by B.

O

- Software Engineering

Wsation |

Verification and
Validation

Verification is an act of testing checking and auditing that makes sure
that the product is designed to deliver all functionality to the customer.

% Verification is done at the starting of the development process.

S It includes reviews and meetings, walk:throughs, inspection,
etc. to evaluate documents, plans, code, requirements

specifications.
» It answers the questions like:
> Itis a Low level activity.
mpleteness, and comeciness

» Demonstration of consistency, €0 '
of the software at each stage and between each stage of the

development life cycle.

A"‘-*’aﬂtages of Software Verification:
1. Verification helps in lowering down the

the later stages of development. ’ :
- Software Engineering '_ﬂ
e e .

Am | building the product right?

count of the defect 0

Scanned by CamScanner

ifyi tarting phase of the ¢
_ Verifying the product at the s _ ”
2 will hgpgin understanding the productin a better Way, 'Dp,hent

3. [Itreduces the chances of failures in the software appi|

product. cahun o 3. lgsl‘iﬂg. system testing, loa d!esu:ke;gature.tes“r‘g- o
4. It helps in building the product as per the cugy testing, etc. ' mpahbi“meﬁling‘str%
specifications and needs. Omg, i \,!alidatitll'll he[p? in buiding 1 n _
customer's requirement ang heyps i, 2a:is?rioduq 3s per the
Verification Differeﬂc 5 -bemagn_vi.,ﬁcaﬁo“ i Vanda::: .Ihen needs,
~— Verification T e

Aalldat]

Fig: Software verification and validation

Needs and Expectation specitications Process o | Va-li d-aﬁ;ﬁ__ =5
of Customer uay //\
7 yerificationis a static practice of } 1. Validation

| ” yerifying ~ documents, design, |
| code and program.)
i 2. Itdoes notinvolve executing the | 2, | s

yalidation is done during testing |

N is a dynamic |
mechanism of validating and

i _lg:_s_tigg_th_e__aclual_g_rgduct,

always involyes execuling

"H_ng_e,'__._—————-——-—-————__ | lh_? code.
% = [4, 1t is human based checking of [3.1t s Ct_i:n;tﬁer_ geim
7.2 Validation " documents and files. | execution of program,
Validation is determining if the system complies with the requiremen 4, Veriﬂca_lion uses methods_. like | 4. Validation uses-;net_hods ke |
and performs functions for which it is intended and meets y, inspections, reviews, | - black box testing, gray box
organization's goals and user needs. - : walkthroughs, and Desk-| ftesting, and white box
" checking etc. = | lestng.

» Validation is done at the end of the development process gy

[takes place after verificalions are completed. 1h
| “the

v

Y

Itis a High level activity.

Performed after a work product is produced against established 6. It
criteria ensuring that the product integrates correctly into the
environment. '

» Determination of correctness of the final soflwafe'ploduct bya
development project with respect to the user needs and
requirements. i

> Validation is basically done by the testers during the testing.

Advantages of Validation: ;

1. During verification if some defects are missed then dufing

v

"5, Verification is to check whether | 5. Validation is to check

It answers the question like: Am | building the right product? | specifications. | customer expectations and {

e b

validation cannot calch. Itis low |

el exercise.

|
software conforms to | whether software mests the

1 I __requirements.
can catch errors thal | 6.1t can catch errors that
verification cannot catch. Itis
High Level Exercise.

. rec Target is actual producta
ation, application and | unit, a module, a bent of

o architecture, * high | ' integrated modules, and
‘complete design, and | effective final product. ;
e design elc. Skl ; e | !

8. Verification is done by QA team
" to ensure that the software is as

8. Validation is carried out »\Irith ; ;
the involvement of teshngi |

validation process it can be caught as failures. | per the specifications in the | team. |
2. If during verification some specification is misunderstood ad | : —
pecification is misunderstood 2 § | SRS document. R s e ollows_after |
development had happened then during validation process 9. 1t generally comes firstdons | 9. I -
while executing that functionality the difference between the béfg presy _ T adicalion= s
actual result and expected result can be understood. - béfore validation. : 5 H
e A : Engineering ®
* Software Er‘[gineeﬁng : ___..—-r"' o S s i

Scanned by CamScanner

=73 Planning Verification and Validatigp.

/ lan is essential o the suc
The developmentof & \-I & :‘I;:lﬂelqr'] s th; seiiok c’::res;s ola%j
The plan must be develop arly 5 - earelyl plg,. ey

3 . : a
required to get the most out of testing and inspection Procesg, Er}fne"lg;i
Cliy

vV &V plan requires many considerations thal are:

1. Identification of V& V Goals:

V & V goals must be idenlified from the requirements and Speciﬁca :
These goals musl address those atlributes of the pr°duc|mng
correspond to its user expectalions. thyy
2. Selection of V & V Techniques:

Specific techniques must be selecled for each of the project's eVl
products. Ving
3. Organizational Responsibilities:
The organizational structure of a project is a key planning considerafy,
for project managers. An important aspect of this structyre is
delegation of V & V activities to various organizations. &
4. Integrating V & V Approaches:

‘Once a set of V & V objectives has been identified, an overall integrateq
V & V approach must be determined. This approach involyves the
integration of techniques applicable lo the various life cycle phases 5
a delegation of these tasks among the project's organizations
Traditional integrated V & V approaches have followed the "Waterfal
model".

5. Problem Tracking:
Software V & V plan to develop a mechanism for documenting problems
s When the problem occurred
* Where the problem occurred
» Evidence of the problem
s Priority for solving problem

L7.4 Software Inspections

Inspection in software engineering, refers to peer review of any ok
product by trained individuals who look for defects using a ‘.»\mli-i.‘leﬁ“ed
process. : ;

> Itis a manual, static technique that can be applied early In
development cycle.
7 Itis the most formal review type.
> Itis led by the trained moderators,
* Software Engineering e

|

» During inspeclion (he

d
thoroughly by the reyia OCuments g

. e nr
1S beforg e ;:Et?fnd and checkeq

ILInVOIVES peers to examing e prod ng.
» A separale preparation i carried e
is examined and the defects arg (. . 013 Which the prod;
* product

S are foy
» The defects found are doe: "

The Inspection Process
The inspeclion process should haye enlry eriteria 1

inspeclion process Iis ready to begin. This
producls from entering the inspectian proces
The stages in the inspections process are:
4 Planning: The inspection is planned b
< Overview meeting: The author de
the work product.
< Preparation: Each inspectaor examines the
identify possible defects.
< Inspection meeting: During this meeting the reader reads

through the work product, part by part and the inspectars peint
out the defects for every part. y

< Rework: The author makes changes to the work product
according to the action plans from the inspection meeting
< Follow-up: The changes by the author are checked to make
sure everything is correcl.
The process is ended by the moderator when it salisfies some
predefined exit criteria. The term inspection refers to one of the mast
important elements of the entire process that surr_ounds 'lhe execution
and successful completion of a software engineering project

Inspection team and role
During an inspection the following roles are used. ‘
Author: The person who crealed the work product being

inspected.

Umented j i
N alogging list or is5ue log

3l determing if the
prevents urfirished wof‘;
4 r

Y the moderatar,
scribes the background of

work product to

s,
o

i i eralor
Moderator: This is the leader of the nnipechcn. The moderalo
esit.

i clion and coordinat
plans the inspe P

% Reader: The person reading through Y dafects.
i nt out g2
at a time. The other inspectors then pot gfects that

& Recorder/Scribe: The person that
are found during the inspection-

% Inspector: The person that exami
identify possible defects.

R N

A

2 item

documents the d

nes the work product 10

Software Engineering * m

Scanned by CamScanner

(Inspections

o l.;IJ\.J-L-d.eslgn }
[models schemas }

o s .‘— r~ r
T Requirements | Software
i
| specification .

i

| System
| prototype

| Progrg, }

=

- “—'“‘;sJ

r

Fig: Inspections and testing

7.5 Verification and Formal Methods

Formal verification is the act of proving or disproving the COrrectnggg of
intended algorithms underlying a system with respectto a certajp, formg
specification or property, using formal methods of mathematicg.
Helpful in proving the correctness of systems Such
as: cryptographic protocols, and combinationa) circuits,
> Verification of these systems js done by providing g formal
proof on an abstract mathematical mode| of the system.

Can be used when a mathematica| specifi

cation of the System
is produced.

Theyare the ultimate statjc verification technigues.
Arguments for FM

Producing a mathematical specification requires a- detailed
analysis of the requirements and this js likely to uncover errors,
They can detect imp!ementatfon

domain experts.

Itis very expensive tp develop Specifi

calion and even more
éxpensive to show that

@ program meets that specification.

m- Software Engineerlug

ATl ST
(7.6 Critical System Verificas
critical system verification ang va

Reliability validation:
Exercising the programg |,
reached the requireqd level
Safety assurance:
Concerned with es_tahlishing Confidene,
However, quantitative Meas
Security assessment:
ed to demonstrate th {

:Z‘Iﬁg(rj than demonstrate _m:isE:;l:rf Ice; ;&;nsmle!;;?ne sate
Safety and dependability Cases:
These are structured documents that set gy

and evidence that a requireg level if safety
been achieved. :

|iEfEI'li0|‘l i"C‘-Udes-

acCagy

Wheth, .
of fEfiabiIn-,. B or ot it has

£ labels in the

Urements of System

safety arg impossible.

t detailed argument
Or dependability has

o)

Software Engineering *
TR A A -

Scanned by CamScanner

Software Testing ang

> Meels the bu
design and ¢

> Works as ex
Software testing h
Objectives of softwa
developr’ng the soft

* To gain co,

nfidence
of quality,

E * Software Englneerfng

siness and tec
evelopment.
Ppected.

as different goals g
re testj
* Tofind defects tha

application with
can also be stated as
a software program or

hnical requirements that guided it's

nd objectives. The major
Ng are as follows:

t may be cregteq by the programmer while
ware.

in and Providing information about the level

__/4

To prevent defectg,

To make sure thay th
i requirements,

2end resuly Meetg the busines
» To ensure that

] it Satisfies the that
Requirement Spemﬁcahon and gpg thay " Businesg
Requirement Speciﬁcalions_ at

< To gain the confidence of
quality product.

software Testing Hierarchy

with almost any technica| Process, softyare testin
A:;jel" in which things should be dong Different leyejs of lesting are oy
i the testing process: each Ilevell of lestin aims to tegt different aspects
mf the system. The fallowing is lists of software testing categories
:;ranged in sequentially organize,

the CUstomerg by Providing ther, a

935 3 prescripey

Fig: levels of testing hierarchy "
i ing i i development process whl_e
Unit testing: Testing is donr-T-t |nd et'::lo ;ment? e et o i
developer completes the uni Hha et The ub s i
testing is to verify correclness_ of the e e s
testing is to check that as individual pa” lehet i o
expected. Basically Unit testing is typically
developer. | % Gt
tion Testing ical
; ting: System lntegfra A B
: Fné?gc;ag?:{:f?:aregmodules are integraled :;u!is“i & these are
m fltw ue roject . consists of multiple :11 integration lesting is
do v.;ar dpb different developers. 5°Udu|esis two modules are
i hy k that after integrating m: It is critical to test evef:
focuses to check hcither ¢ Aot e o e
Communicating with ea ire program model.
Module’s effect on the er;t;rti sl:;jng.
M Software Engineering -
s S o i Cosetna i o

Scanned by CamScanner

: This i first time end to end

tem testing: This is the _ e,

3. :g;j.:a(ion on the complete and fully integrated Softwarg pl;"lg o
before it is launch to the market. wuq

nce testing: User acceptance is 3 type of
% :ei‘f:::ir::d by the Client to certify the system with FESpeCtl?sting
requirements that was agreed upon. This is betg testin ?U‘e
product & evaluated by the actual end users. The main Purpg, the
this testing is to validate the end to end business fioy. S of

[L ——
_.fh! } Test =% o Test | iﬂ-a-.
[“ 5. j ”‘ L oa 7 J[_] [‘ o |
'gw' agn test .~ 9vrp;f; test T pregram y Compare ;t.sull-s
iy)_" 1 data y . wilh test data il 10 test cases /'
e TR - e

Fig: A model of the software testing process

|8.2 System Testing

System testing is the type of testing to check the behavior of 3
complete and fully integrated software product based on the Software
requirements specification (SRS) document. The main focus of this
testing is to evaluate Business / Functional / End-user requirements,

> This is black box type of testing where external working of the
software is evaluated with the help of requirement documents
,'I & itis totally based on Users point of view.

» For this type of testing do not required knowledge of internal
design or structure or code,

~ This testing is to be carried out only after System Integration
Testing is completed where both Functional & Non-Functional
requirements are verified. -

In the integration testing testers are concentrated on finding
bugs/defects on integrated modules.

Butin the Software System Testing testers are concentrated on,
finding bugs/defects based on software application behavior,
software design and expectation of end user,

> System testing is the testing of a complete and fully integrated
software product.

What do you verj in System Testing?

System testing involves testing the software code for following:

" Tesling the fully integrated applications including externdl
Peripherals in order to check how components interact with oné

"E * Software Englneering
______‘______‘__________-___——.‘

%

.4, Usability Testing: Usability Testing mainl

another and with the g st
to End testing SCenarig. g 3 Whole,

4 Verify thorough testin,

« Testing of the users eXperig

That is @ very b_asic deécriptfon of what ig involyed ;

you need to bu!rq d‘lelal!ed test cageg and tegy :d_ N System testing,
aspect of the application ag Seen from the Outside “::fs that llest each
actual source code, Outlooking at the

pifferent Types of System Testin

i ¥ focpses o
ease to use the application, ﬂexibifity in ha:ﬁ!ing cznﬁzi:s:::

ability of the system to meet its objectives.

2. Load Testing: Load Testing is Necessary to knoy that a software
solution will perform under real-life loads.

3. Regression Testing: Regression Testing involves testing done to
make sure none of the changes made over the course of the
development process have caused new bugs, It alsg makes sure
no old bugs appear from the addition of new software modules
over time.

4. Recovery Testing: Recovery testing is done to demonstrate a
software solution is reliable, trustworthy and can successfully
recoup from possible crashes.

5. Migration Testing: Migration testing is done to ensure that the
software can be moved from older system infrastructures to current
system infrastructures without any issues.

6. Functional Testing: Also known as functional wmpleten.ess .
testing, Functional Testing involves trying to 1hin‘k of any gg;ﬁ::
missing functions. Testers might make a !|sl of ault ;UC:in
functionalities that a product could have to improve i 9
functional testing. o AA—

7. Hardware/Software Testing: 'Ijh|$ is when e raha
his/her attention on the interactions between

Software during system testing.

N TR U - TS E e,

Software Engineering *

Scanned by CamScanner

ifference petween Unit and C_om onent testing; Yr
Differs 3 ' _ Component Testip,

jon | i 2r objects is call
. i is called Unit [other obj alled
[:ﬁ:ﬁ,g’ﬂ"o" e Component Tesling,
L-;stahd;l;d against design (2 lis vqudated against tesr‘"'_-
3 documentls. | requirements, use cases |
|'3. Unit testing is done by ! 3. Component testing is m.
| Developers. e | by Testers. g |
f 4. Unit testing is done first. [4. Component testing ism
f | after unit testing is completg |

_,|__ from the developers s end,
___""‘--.

8.3 Component Testing :

Component testing is a method where tesl!'ng of each component in an
application is done separately. Suppose, in an application there are 5
components. Testing of each 5 components separately and efficiently
is called as component testing.
Component lesting is also known as module and program
testing.
It finds the defects in the module and verifies the functioning of
software.
Component testing is done by the tester.
Component testing may be done in isolation from rest of the
system depending on the development life cycle model chosen
for that particular application. N
In such case the missing software is replaced
by Stubs and Drivers and simulate the interface between the
software components in a simple manner.
> Letstakean example o understand it in a better way. Supposé
there is an application consisting of three modules say, module
A.Orélc:dule B and module C. The developer has developed thé
:I:Odule B and now wanted to test it. But in order to test the
i ;035 completely few of it's functionalities are dependent
hoid E’B A and few on module C. But the module A and
edia cf:)a; T}Otl ?een developed yet. In that case to test the
pletely we can replace the module A and module
C by stub and drivers as requireq,

* Software Engineering _

>

3

A\

b 1

4

|ntegration testing is followeag by the co
mp:

fierenc onent (ast
[Unit Testin stub is called fr sing.
T | 1. Tesling each objeg| . gub: A st : om the softwarg gopm.
1. Testing individual pmgtm:;::l of the software scnn:}]r Party ¥ as shown in the diagram below ‘Stuty ig ¢, """ 10 be tested
" modules to dETon:t::a:rihe AtH oF witheiit Isofal!:,ial priver: A driver calls the COMponent 1o pe ":‘[*f ‘companant A"
m executes of iagram below ‘component B' s caflsq by-lh;gcr!i.vhs shown in the
er’

gelow is the diagram of the componen tesling:

Component l‘_l_J ‘_:::I z

8.4 Integration Testing j

Integration testing is a software testing methodology used to test

individual software components or units of code to verify interaction

petween various software components and detect interface defects.

» It tests integration or interfaces between components,
interactions to different parts of the system such as an

operating system, file system and hardware or intedfaces

between systems.

Components are tested as a single group or organized in an

iterative manner. After the integration testing has been

performed on the components, they are readily available for

system testing.

Also after integrating two different components together we do
the integration testing.

As displayed in the image below when two different modules
‘Module A' and ‘Module B' are integrated then the integration
testing is done.

> Integration testing is done by a specific integration tester or test

team.

Y

Ao

Module & [Mcttube §

Integration
Testing

—

Scanned by CamScanner

Below are the different strategies of Integration testing, th
are executed and their limitations as well advantages.

Way t‘"

[8.4.1. Big Bang Integration Testing

Big Bang integration testing, all component are integraged :

at once, and then tested. ety
» Here all components or modules are integrated Sf”"“"an

after which everything is tested as a whole. oy

» As per the below image all the modules from 'Mﬂdure :

.Mo(_:lule 6' are integrated simultaneously then the 'eSlir: h
carried out. Qg
Big Nang Integration Testing
Module 1
_\lc;dul-r.(.- ! Module 2
ot System ©
Module 5 .“lld\‘li(‘ 3
. | .\Ind.ulr 4 -
Advantage:

%+ Big Bang testing has the advantage that everything is finisheq
before integration testing starts.

% Convenient for small systems.
Disadvantage:

% Fault Localization is difficult.

< Given the sheer number of interfaces that need to be testedin
this approach, some interfaces links to be tested could be
missed easily.
Since the integration testing can commence only after “all* the
modules are designed, testing team will have less time for
execution in the testing phase.
* Since all modules are tested at once, high risk critical modulés
are not isolated and tested on priority. Peripheral modules
which deal with user interfaces are also not isolated and test

on priority.
| 8.4.2 Incremental Approach ;j

The approach of testing where testing is done by joining two or moré
modules that are logically related is called as incremental approach-

* Software Engineering e

s,
!

s,
!

| g bs D- -)
(1 USBd_i_I"I_TUp_dOWﬁ approgg—\"-—_r!vel-

This Process is carrigg o B o
called Stubs and Drivers. Y using dum
. stubs and Drivers do not imple

“ logic Of. fhe software mnpd men € entirg
communication with the calling modur: just

- Jifference between sty
T = - -

Stubs

my Prog fams

Programmin
Simulata d alg

bs i
s anfi driver €an be Show,
: - — N as:

h _...'__?-_l_{.s_ad_in_@m

|
O Up approach |

~, Top most module s tested first | 2 | g0

|2 TG?_ el St modules are tested

|3 stimulates the lower level of 3 Slimulal;s‘tﬂe—ﬁg;;k;-r___:
_gmeR”-‘?”-‘-s ————— | COmponents =

"% Dumimy program of Iower evel | 4. Dummy progam o i —
components ———_|___level component e

-mental Approach is further divided into foIIowir{gT, -

++ Top Down Approach

<+ Bottom Up Approach

< Sandwich Approach - Combination of Top Down and
Bottom Up

a) Top-down integration testing:

In Top to down approach, testing takes place from top to down following
the control flow of the software system.

» Ittakes help of stubs for testing.
» It Can be shown as below:

Incre

Top Down

IIE\':hi'antageg. .
< Fault Localization is easier.
* Possibility to obtain an early prolot?xpe- .
% Critical Modules are tested on prionty: major
be found and fixed first.

e = T

design flaws coutd

Software Engineeri"d E

Scanned by CamScanner

Disadvantages:
Needs many Stubs.)
< Modules at lower level are tested madequateiy_

o

b) Bottom-up integration testing:

In bottom up testing takes place from the bottom
upwards.

of the 00“']'0'

» Components or systems are substituted by drivers,
» Below s the image of ‘Bottorn up approach:

|
|

Bottom
up

Advantages:
% Fault localization is easier.

% Notimeis wasted waiting for all modules to be developeg Unikg
Big-bang approach.

Disadvantages:

** Critical modules (atthe top level of software

control the flow of application are tested last
to defects.

architectura) whig
and may be prone

% Early prototype is not possible,

c) Sandwichz‘H[hrid testing:

Itis an approach to Integration Testing which is
Down and Bottom Up approaches.

Integration Testing Procedure:

The integration tes
discussed here:

1.

a combination d'Tnp

t procedure irrespective of the test strategies at

Prepare the Integration Tests Plan.
Design the Test Scenarios
Executing the test Case
Tracking & re-testing th

Steps 3 and 4 are
is successfully,

. Cases, and Scripts.

s followed by reporting the defects.
e defects,

répeated until the completion of Integrai®”

DR ow

m- Software Engineering '__"‘“——-—————-__.._,..__-——l-‘/

ing the completed
ET Tfosé::ﬁ to check if it mestg
the specification
re_quirErT]E"!T:S-_ — e
2 “Both functional and non-

like sanity, usability, |
performance, stress and joag,
(3. Itis a high level testing
g performed after integration
| testing ——
4 Itis a black box testing
technique so no knowledge
of internal structure or code
|__is required —_—
(5. Itis performed by test
engineers only

PR e
= System Testin [

——_Tesylt

i 2
" functional testing are covergy |

—— W0 modyle

1 ;res'ling the g
‘:::!rfaca Modules 1,
Bther they oo (O Check .

Itis both b
box tesy;
"Equires

4, lack box ang _‘\'-%‘i_le
"9 approach s it
the knnwledge of the
s 2nd the interface |
5. Integration testing is perfor;;n‘i_d.
y E!evelopers as well test i
| engingers. !

' 6. Here the testing is performed
on the system as a whole
including all the external
interfaces, so any defect
found in it is regarded as

| defect of whole system

7. In System Testing the test
cases are developed to 5
simulate real life scenarios

i ~+ interaction between the two |

| 6. HE(e the testing is performed |
| oninterface between indiyidya) |
| module thus any defect found is
onlly for individyal modules and
not the entire system

7. Here the test cases are
.. developed to simulate the

8. The System testing covers
| many different testing types
| like sanity, usability,

‘ maintenance, regression,

—Telesting and performance |

module e I
8. Integration testing techniques |,

includes big bang approach, |
top bottom, bottom to top and ‘

sandwich approach.

8.5 Regression Testing

Regression Testing is defined as
al a recent program or code
EXisting features,

Scan

Software Engineering ®
e E L e S U U

ing to confirm
type of software testing i
r?hgrlfge has not adversely affected

ned by CamScanner

ges are done to the applicay;

ification or chan :
to the code then it can bring U nr%

hen any mod >
When any change is done ne
o

when any small
issues. Along witt
whether the ex:slmgl ;
by doing the regression testing.
» The purpose of the regression testing is lo find the by,
may get introduced accidentally because of the newgsl\ﬁ“
or modification. Chanﬂﬁ
» During confirmation testing the defect got fixed ang y
the application started working as intended. But there al.pal‘lq
2 possibility that the fix may have introduced or unggy
difierent defect elsewhere in the software. The way ¢
these 'unexpected side-effects’ of fixes is to do reﬂdeteu
testing. s
» This also ensures that the bugs.found earlier are not ¢req,
» Usually the regression testing is done by automation :
because in order to fix the defect the same test is 1:arr§e‘-}wi
again and again and it will be very tedious and time congy
to do it manually. -
> During redression testing the test cases are prigrf;
depending upon the changes done to the feature or modyl ag
the application. A
> The feature or module where the changes or modification s
done that entire feature is taken into priority for testing.
» This lesting becomes very important when there are continuoss
modifications or enhancements done in the application o
product.
e _These changes or enhancements should not introduce nex
issues in the existing tested code. .

> This helps in maintaining the quality of the product along Wil
the new changes in the application.

Example

Lﬁt s assume that there is an application which maintains the detallsof
g 'the students in school. This application has four buttons Add, S&¥&
elete and Refresh. All the buttons functionalities are working &
‘T“;?ecﬁdd Recently a new button ‘Update’ is added in the applicatior:
wo:dn Dasatee button functionality is tested and confirmed that
to kno'«%r that fﬁe‘?"ad' But at the same time it becomes very im
e ch bﬁ' introduction of this new button should not impact 0%
the other b:.?l? uttons functionality. Along with the ‘Update’ button a
ikl il functionality are tested in order to find any new’s
ng code. This process is known as regression testing:

E. Software Engineering — —

h the new changes it DECOMES very impqy
nt

p
functionality is intact or not. This cap be ky
ack;

O\refeu ;

iy

1ypes of Regression testing technigy
pere ar four differenttypes of regression lestin Ets
lows: 9lech
corrective Regression Testing; Corrcyiyg
=

1) d when there is no ch ; gressi ;
e use change =3sion testj
b s tousen, 8¢ In the specifications a:& f::l

niques, They are

53535 c
jve Regression Testing:
progressive lon Testing: Pr i)
2 ysed when the modifications are doﬁ?ﬁstze —ogression testing
new test cases are designed. & specifications and
Retesl-l_”*" Strategy: The retest-all strateqyisy ")
consuming because here we reuse all test :;‘;::dmuglan“me
execution of unnecessary test cases. When any s.nazfs":;; in the
or change is dane to the application then this sl.ra'feg&' i;nno:ﬁliufoT
gelective Strategy: In selective strategy we use a subset ;;-
existing test cases to cut down the retesting effort and cost, If ane
changes are done to the program entities, e.g. funclions va'ﬁabte‘;
elc. then a test urnlt must be rerun. Here the difficult paq:t is to find
out the dependencies between a lest case and the program entities
it covers.
When to use it
Any new feature is added
Any enhancement is done
Any bug is fixed
Any performance related issue is fixed

Advantages
% It helps us to make sure that any changes like bug fixes or any
enhancements to the module or application have not impacted
the existing tested code.
& It ensures that the bugs found earlier are not creatable.

% Regression testing can be done by using the automation todls

& It helps in improving the quality of the product.
Disadvantages

% If regression testing is d
it can be very tedious and
execute the same set of test ca
Regression test is required even when @ E%r;?en e
done in the code because this small ™

unexpected issues in the existing

one without using automated tools then
time consuming because here we
ses again and again- /
all change 1S
n bring

functionality.

software Engineering ‘E

S S

Scanned by CamScanner

and Beta Tesﬁg—\

Alpha Testing .
i f acceptance testing performeq g
Alpha testing is a type O . e
popssibla issues/bugs before releasing the product to every day u?ﬂh
public. o - ,,
> The focus of this testing is _to simulate real users
blackbox and whitebox techniques. y “Si:,'
5 The aim is to carry oul the tasks that a typica) il
perform. .
Alpha testing is carried outin a lab environment ang
testers are internal employees of the organization,
> To put it as simple as possible, this kind of testing 5 5
alpha only because it is done early on, near the gng g
development of the software, and before Beta Testing,

Beta Testing

Beta Testing of a product is performed by "real users" of the sof
application in a "real environment" and can be considered as a fom
external User Acceptance Tesling.

> Beta version of the software is released-to a limited numbgry
end-users of the product to obtain feedback on the progy
quality.
» Beta testing reduces product failure risks and provids
increased quality of the product through customer validation,

Itis the final test before shipping a product to the customers.

Direct feedback from customers is a major advantage of Bel
Testing.

> This testing helps to tests the product in real time environmert
Difference between Alpha testing and Beta testing:

v

5Ua]|y t

v

W

|r*- e . Beta Testing

' Alpha Testi %

| P domting (Field Testing)

f 1. Itis always performed by the | 1. Itis always performed by
developers al the software [the customers__a‘ljl_hglfl""’m

|___development site. . site. R

2. Alpha Testing is not open to the | 2. Beta Testing is always
market and public open to the market an
__.‘ __public. oo

3. Itis usually conducte W |

]>3. Itis conducted for_l;.e_;ﬁare

| @pplication and project, software E@E—-’/
‘Software EnginEeﬁﬁ;_-_ T e ___'_'_/

_[3_7 Black Box and White Box Testing 1

:';i. |t is always performed in \-.fi-rl.u_al d. e —
" Environment. « | 1L perform
— ripha Testing is definitely To—
5, Alpha bl -Beta Toapio I
|5/ erformed and carried out atthe | ° ?:‘;‘Jf“l'ng (feld estng) |
orm

developing organizations localion 2d and carrt |
| with'the involvemnent of ll ::‘ by users or w?;naid ||
developers. | hgageom attheiroyn |
: oF, | ks ;:s and site using
== StV R lomer d
6. Alpha Testing is always | 6. Beta Tegyy atg. RECTAE
performed at the time of Dekfonn ;Q is always |
Acceptance Testing when when 5:!Mal the time \
developers test the product and | are product ang |

-
| project to check whether it meets | Project are marketed, |

{he user requirements or not, ! II
e user re L SR
! v _-_-‘
| T ltis alwa:,rs performed at - |
the user's premicesin the |
| absenceofthe
i RS developmenttean, o)

1k]i-is always performed at the
developer's premises in the
absence of the users,

Black Box Testing

Black box testing is the Software testing method which is used to test
the software without knowing the internal structure of code or Program

> Tester is aware of what the program should do but does not
have the knowledge of how it does it.

> It provides external perspective of the software under test.
Advantages

% Efficient for large segments of code
% Code access is not required .
% Separation between user's and developer's perspectives

»,

Disadvantages
% Limited coverage since only a fr
erformed
& Tnefﬂcient testing due to tester's luck of knowledge about
software internals
¢ Blind coverage since tester ha
application

action of test scenarios s

s limited knowledge about the

neeringd 'E

goftware Eng!
i 2" el e

Scanned by CamScanner

ey

; Cutput

Black Box

Input —H

Fig: Representation of black box testing

White Box Testing

White box testing is the software le:s.ting_ method in which inte
structure is being known to tester who is going to test the Softwarg M|

» White-box testing relquires internal knowledge of the SYsten
and programming skills.
¥ It provides internal perspective of the software under test.
Advantages
% Efficient in finding errors and problems

** Required knowledge of internals of the software
beneficial for thorough testing

Allows finding hidden errors
Programmers introspection
Helps optimizing the code

Due to required internal knowled
coverage is obtained
Disadvantages

% Might not find unimplemented or missing features

< Requires high level knowledge of internals of the software
under test

* Regquires code access

under teg is

LR
L

£

ge of the software, maximum

" White 7
[
[¥
| B 1 _ el

Fig: Representation of white box testing

* Software Engineering

ﬁ:ﬂox testing is
| ' {he Software testing
method which 15 used to test
the software without knowin
the internal structure of the =~ |
program. e
'2_ This type of testing is carried
" out by testers.

Lrmmmr e L develoners,
['3. Implementation Knowledge is | 3 '—-T—
i I

i - Imple R e |

not required to carry out Black | reqp ui;:;r;;ac:n Knowtedge is |

| BoxTesting. _ _~ ~ __._.L_Whi_le___a_w Te;?n;ut 'l
4. Programming Knowledge is nat | 4. Program e —
required to carry out Black Box | "-‘Ened:tr?;nmadge is |
Testing. b '

| White Box Testin
i 10 ’ : —j————-_.__. =5Ung. u
t 5. Testing is appilca.bie on higher] 5. Testing is applicableon |
levels of testing like System lower leve| of testing like Unit |
ke 09| Testing, Integration testing, |

| 6. Black box testing means i 6. White box testing means 'I
| functional test or external | Structural test or interior |

] P L testng. B

[B.B Test Case Design T

Test case design is the designing process that involves the designing
of test cases ie. inputs and outputs for the system test. The goal of test

case design is to create a set of tests that are effective in validation and
defect testing,

Test case design approaches:
1. Requirement-based testing
It is used in validation testing techniques where we consider each
requirement and test for that requirement.
2, Partition testing)
Itis a software testing technigue that divides the Inpu S carce b
unit into partitions of equivalent data from which te‘ls ncover classes
derived. This technique tries to define test cases trza:ﬁs that must be
of errors, thereby reducing the total number of tes

Eveloped,

t data of a software

goftware Engineering *
O i SPUI PILTS SR =

Scanned by CamScanner

O pantiong
e
It equivalerae past |

|
N

!

I

Possibile inputy Coerect mlnlmm
Fig: Equivalence partitioning

Input data and oulput results often fall into different classes y,
members of a class are related. Each of these c!as;es is an equj
partition or domain where the program behaves in an equival
for each class member.

3

[-1 ml

Between 4 and 10

Possible outputs

her 5
Va|e;-|

ent way

Less than 4 More than 10

Number of input values

5999 100000
j 10000 50000 959951

Lessthan 10000 Between 10000 and 99999 . More than 53999 l

Input values

Fig: Example of equivalence partitions
3. Structural testing

Itis a method of testing software that tests internal structures or working
of an application, as opposed to its functionality (i.e. black-box testing).
In white box testing an internal perspective of the system, as well &
programming skills, are used to design test cases, the tester chooses
inputs to exercise paths through the code and determine the

appropriate outputs.

@9 Test Automation
ethod in software testing that makes use of

T&st'automaﬁon isam
special software tools to control the execution of tests and the
€s actual test results with predicted or expected results.

compar
* Software Engineering

_—l——--’

can automate previoys re
fnm!::hzcd lesting Process
testing that would be diffiey,
Reduces tesling costs By g)
range of software tools, Pporing

Detitive bt e

<UL
al ¥ Cessy,
: l|r:m"!“.r N place o ':GLesh |
Pertorm Manyaj, Additiong

z e taq j

251 Procagy With
There are lwo general approa
" Gode.driven testing:

The ublic interfaces to classes, module
ariety of inpul arguments o validate i ;l; tar:e‘lemd with 3
are correcl. Bl are retumag
2 Graphical user interface testing; '

A testing framework generates user |
kcystrokes and mouse clg_cks. and obserye
the user interface, to validate that the
program is correct.

Automation Testing Tools
Autolr e
1. Selenium:

ches to tasy aulomation

S Of libraries
al the regy

Nerface events
such
s the changes s

that results in
observable behavior of the

» Itis a software testing tool used for regression lesting.

» It is an open source testing tool that provides playback and
recording facility for regression testing,

» The Selenium IDE only supports Mozilla Firebox WEB browser.
QTP (HP UFT):

» It is widely used for functional and regression testing, it
addresses every major software application and emvironment.

» To simplify test creation and maintenance, it uses the concept
of keyword driven testing.

» It allows the tester to build test cases directly from the
application.

WATIR: .
> Itis an open source testing software for regression lestng. -
> It enables you to write tests that are easy toread and mairkain

; Watir
> Watir supports only internet e;pinrer on wmdw;cvmne
webdriver suppor[S Chrome, Firefox, IE, Qpera, el

8.10 Metrics for Testing

rocess of testing,
Maijority of metrics for testing propose focus on N

elves.
not the technical characteristics of the test o :

are Eng]nelﬂﬂg ’E

Softw

Scanned by CamScanner

Halstead metrics applied to tegting: .
Testing effort can be estimated using metlrics deriveqd from i
al

measures. 1 SIE%
L= mz
2 n2
_ V
=L
Where,

PL is program Level

e is Halstead effort

Vis program volume

n1 is no. of distinct operations that appears in program,
n2is the no. of distinct operands that appears in the py,
N2 is the total no. of operand occurrence.

The percentage of overall testing effort to be allocated t
‘K' can be estimated as:

Qram,

© @ mody,
e(K
K= 'Tg_)
Ze(i)
Where,
| e(K) is cornputed for module K
Z e(i)is the sum of effort across all modules of the system.

} |8.11 Cyclomatic Complexity o

Cyclomatic complexity is a software melri
. elric used to measure the
complexity of a program. These metric mea i
R sures independent paths
through program source code. PengE
. # Independent path is defi
edge which has not been

ned as a path that has at least one
o traversed before in any other paths.
yclomatic complexity can be calculat i

: ed with respect 10
functions, modules, methods or classes within a program.

: itis based on a control flow representation of the program.

Control flow depicts g i i
Nodes and Edges. program as a graph which consists &

¥

v

Iti ;

lhlast ﬁg‘:ﬂ?ﬁf”tﬁ eveloping a Control Flow Graph of the €09
€ number i i

through a program modyle. - of linearly-independent

U] » Software Engineering
''_—————-________________'____...-_4"'"

|tcan be _ %
cyclﬂma“c complexity =E. N + 2p

gxample

A =B
ELSE

A =C
ENDIF
ENDIF
Print A
Print B
Print C

Flow Graph

Lower the Program's Cyclomay;
madify and easier to undeﬂrs?::g

(4] .
rnDlexxty, lower thg «
represented using the below f ® fisk 1g

Ormulg:

where, .
= number of edges in the flow graph

N= number of nodes in the flow graph
p = number of nodes that have exit points

IF A = 10 THEN
I{F B > C THEN

Scanned by CamScanner

R

plexity is caleulated using “.m above cony
diagram that shows seven nodes (shapes) and eight edges “inag;ﬂ%
Hence, the cyclomatic complexity is 8 -7 + 2=3 ;

Tools for Cyclomatic Complexity calculation:

Many tools are available for determining the complexity
application. Some complexity calculation lools are used for o
technologies. Complexity can be found by the number of decigig,, p‘:a?'r'ﬁ
in a program. Nty
Examples of lools are

&+ OCLint : Static code analyzer for C and Related Languages

& devMetrics : Analyzing metrics for C# projects

& Reflector Add In :'Code metrics for NET assemblieg

& GMaetrics : Find metrics in Java related applications

< NDepends : Metrics in Java applications

Uses of Cyclomatic Complexity:
The uses of the Cyclomatic Complexily can be summarized under the
following points:

% Helps developers and testers to determine independent path

The Cyclomatic com

executions.
<+ Developers can assure that all the paths have been tesied o
least once.
< Helps us to focus more on the uncovered paths.
< Improve code coverage.
< Evaluate the risk associated with the application or program.
% Using these metrics early in the cycle reduces more risk of the

program.,

[8.12 Symbolic Execution

Symbalic execution or Symbolic evaluation is the means of analyzing
a program to delermine what inputs cause each part of a program to
execule,

Itis a software testing technique that is useful to aid the generation of
test data and in proving the program quality.

Steps in Symbolic Execution :

% The execution requires a selection of paths that are exercised
by a set of data values. A program, which is executed US"
actual data, results in the output of a series of values.

-Soﬂwara Engineering —

A

;1r'IZ'I]
{]mF’h
The flowgraph identifies the
ns-\‘,igl’llﬂ!‘}nlﬁ associaled with each
graph from an entry point, a list of
pranch predicates is produced,

advantages of using symbolic eXecution

Symbolic execution cannot proceed jf
in the loop is known.

.13 Software P

goftware productivity is the ralio between the amount of software
to the labor and expense of producing it. There are tuo.
measures of software productivity:

1. Size related measures:

{t measures the line of code delivered and measures no. of deliversd
object code instructions or no. of pages of system documentation,

For example: A system which might be coded in 5000 lines of assembly
code. The development time for the various phases in 28 weeks:

Then productivity

produced

L]

T e

™ symbolic execution, the
with 5
The common approach for Symbg
ysis of the program, res,

The second issue is the invocation of

any out-ofing eoda o

Sym bolic execution cannol be ysed With arrays
The symbolic execution cannot identify of infeasible paths

foductivity

" = 714 lines/month

2. Function-related measures:

Productivity is expressed in terms of
produced in some given lime. It is bas
functionality of the delivered software.

computed by measuring program features:

External inputs and outpuls
User interactions

External interfaces

Files used by the system

the amount of useful functionality
ed on an estimate of the
Function in a program 1S

!
i

Scanned by CamScanner

s associated with each of these and the func

_— a1 1) inson's Law: Parkingq.:
A weight I P h raw count by the we; Qing arkinson & SON's | g,
is computed by multiplying eac Iht ang 4 ::; fill the tn® available. The co,," Hates gy, exp
. . LS urces rather than by gpjg e n s
all valu ; : 1 reso : X VE asgeg ¥ availay
Factors affecting productivity: i has to be delivered in 12 months ang & e f the Sﬁﬂwat:
B it Aol vivtarlance: Knowlegg, | the effort 1eQUIred IS estimated to g g Ereon 1 v
:‘pﬁicalioﬂ domain is essential for effecty,y o pricing to win: The software cogy | sl M-Months,
dgfefopment_ Engineers who already understany adoysll ° ihe customer has available 10 Speng gy . 0¢ Whateyer
likely 1o be the most productive. “‘i'rn!." | estimated effort depends on the

N the oo
Custamer's p, dg:l'ﬂlect_ The

the software functionality. and nol gn

< Process quality: The development process
significant effect on productivity.

% Project size: The larger a prlojectl, the more timg reqy

team communications, Less time is available fo, dev|, e

o i : ' nction of prog

so individual productivity is reduced il '55 T oa Vit ey i ot

Technology support: Good support technology Such g o proce ERos A ~E it i

i i nagement systems, etg, : : |
;igésl.mct:ﬁli':f;gurahon R ¥ €le. can Mprg Where, Ais an organization.ge

Used can ha
B,

515 Algorithmic Cost Modeling

freu &'
Py

s estimated as a mathematical 1,

uck, project ang
ect managers:

pendent constant,

“ Working environment: A quiet working environme i Bror_eef:;:l;-néhe disproportionate gffont for large
private work areas contributes to improved Productivity, ™ p 'J - .
' M is a multiplier reflecting product, process and
. = - | people attributes,
|8.14 Estimation Techniques

| The most commonly used product attribute for cost estimation is code
____‘__‘-i—-__‘. L + . "
There is no simple way to make an accurate estimate of the efiw| size. Most of the models are similar but they use different values for A,
required to develop a software system. Initial estimates are basedqy| BandM.
| inadequate information in a user requirement definition, People in

| Project may be unknown. Project cost estimates may be self-fulfilig, WEstimation ACCUI'EICY l
The estimate defines the budget and the product is adjust to mest : :
budget. ’ ¥ . The size of a software system can only be khown accurately when it is
Some of the estimation techniques are: finished. . _—

1. Algorithmic cost modeling: A model based on historical s | - Several factors influence the final size
information that relates some software metric (usually its size * Use of COTS and components
lo the project cost is used. An eslimate is made of that meti o] Programming language
and the model predicts the effort required.

: * Distribution of system : i
2. Expert judgment: Several experts on the proposed software cess progresses,then the size estimate
~development techniques and the application domain #¢ f]\:cthe developmir;talgrocess p e
consulted.. They each estimate the project cosi._TheﬁE Omes more acc 3
estimates are compared ang discussed. The estimaiol} .
process iterates until an agreed estimate is reached.
3. Estimation by analogy: This technique is applicable “’"e';
Other projects in the same application domain have beé

completed. The cost of 5 new project is estimated by anaod!
with these completed projects. '

Softw
o'Soﬂware Englneering Tl

- E.nglﬂ“'?"u ' m

Scanned by CamScanner

T

SN V.
Design Code -

Fig: Estimate uncertainty graph

8.17 The COCOMO Model

The COCOMO model is an empirical model based op
experience.

> Well-documented, ‘independent’
specific software vendor.
Long history from initial version published in 1981 (COcomo.
81) through various instantiations to COCOMO 2,
COCOMO 2 takes into account different approaches t,
software development, reuse, etc.

COCOMO 81

Projey

>

S

Project Formula Description

complexity

Simple PM = 2.4 (KDSI)1.05 + y Well-understood applications
developed by small teams.
More complex projects where
team members may have
limited experience of related

systems.

Moderate pp =130 (kpsi)1-12 + m

Complex projects where the
software is part of a strong
coupled complex O
hardware, software,
regulations and operation

procedures.
_________,/
__.—-—'-"""'/

Embedded pp =36 (KDSI)1-20 + 0

* Software Engineering

model which is not figg tog |

gocOMO?
g1 was developeqd
- COMO With the .
Gr25355 would be used and that) soﬂi:;:wrn I
Wo

I b Wal
uld erf,
_ scra{ch, ‘ be i all
ce its formulation, there haye been
; neering practice and COCOMg 5 ; ”d‘Zn?« ch ot
fare

! roaches to softwa St t
- gifferent app . df—‘\fel'opmem_ ’ BCCOMModaty
cOCOMO 2 models

OCQMQ 2 incorporates 3 range of s

asingly detailed software estimaeg. Odels thy Produce

| jncre)
The sub-models in COCOMO 2 are:
«~ Application composition model: Usgy !
composed from existing parts. When Software i
« Early design model: Used when requirements
but design has not yet starteq. are availabje
+ Reuse model: Used to compyte the effort of integra:
reusable components, egrating
Post-architecture model: Used once the system architecty
i 2 i
has been designed and more information aboy fhe system s
available. &5
N— ptnees PO
Numberof |. Basedon [Application | {sed for | Prototype systems |
application points—[f_“‘ compasition modsl . d‘;\;r:‘iupsﬂe;;;sns J
S e v . R poganmag etz |
=y ——— =
Number of functi ‘' Based on " Initial effort
paints " ; Early design model Lo sémmfﬂn’; i
I T and design optrs !

| Number of fings of |
tode reused o Lo
Benerated

Based on

| N”';"Dbe"ﬂf fines of
L & Uree cade

a3 ST

Fig: Use of COCOMO 2 models)

v smam Englnﬂeri"g * m

g |

Scanned by CamScanner

8.18 Project Duration and Staffing D
Il as effort estimation, managers must csli.malu the ¢g) |
isq:;?edﬁtso complete a project and when slaff will be mﬂi-rire; dar ti,
S ti be estimated using a COC]

= ?g!g&d:; :T;ht;;zam.z-m-mm OMO 7 form,,.

Where PM is the effort computation and B is the exponent comp,
discussed above (B is 1 for the early prototyping model), ut&”a,

» This computation predicls the nominal schedyle i
projects. or

> The lime required is independent of the number
working on the project.

Staff required can't be computed by diving the develg
time by the required schedule. PMey
The number of people working on a project varies depeng,
on the phase of the project. iy
The more people who work on the project, the more total gffy
is usually required. :

of DEODL;

A very rapid build-up of people often correlates with schedyl Qual i'-ry Mﬂnagemem-

slippage.
o]

9.1 Quality Concept

Software quality is'concerned with ensuring that the required level of
quality is achieved in a software product.
~# Involves dgﬁning appropriate quality standards and procedures
and ensuring that these are followed.
» Quality managementis particularly important for large, complex
systems.
The quality documentation is a record of progress and supports
continuity of development as the development team changes.
For smaller systems, quality management needs 1:rss
documentation and should focus on establishing a qually
culture,

oftware El'lui“““““"l

'Software Englinaering o] e i

Scanned by CamScanner

serviceability: Serviceapjy,
o | : 5 : product can be put intg h':'\? S the

SPeed vy
enq h‘eakglh Which, the
£

Se
as the compelence ang the _DCF wh

% ehayi

| | Aesthetics: Aesthetics s Sut: : OWN, 35
v the kind of response 3 USer hag Ue'- ve d"menmn rson
e Y e — !) . p

[i [individual’s personal prefereng, ~ - Product Tepres,
ed Quali ;
'S the quafiy
Measires. W altributeg

9.2 Software Quality Assurance

i t activities
Quality managemen _ <otware quality assurance (SQA) is » g
Quality management should be separate from project Managemegy, , developed software meets and complies y; S5
ensure independence. The main three quality managemen| aﬂ,\;.m; quality specifications
are: % SOA helps ensure the develapm, y
: . g ent of high-qusr
% Quality assurance: Establish organizational procedyreg any » SOA practices are implemented in rm?sl i s
standards for quality 3 development, regardless of the undt:ge's e
Quality planning: Select applicable procedures and stangg,., development model being used, Ying software
for a particular project and modify these as required & In a broader sense, SQA incoporates o
< Quality control: Ensure that procedures and standards 2, software lesting methodalogies to test sohwa‘re Rafhea‘?:!::
followed by lhe software development team checking for quality after completion, SQA processes test for

: | 7 i quality in each phase of development unlil the software is
Garvins Quality Dimensions: complete

in's ei imens H p 1arized as follows; i
Garvin's eight dimensions can be sumrm G : v ANk (e soliwice iliorb it e
1. Performance: Performance refers 1o @ product’s primz, next phase only once lhe current/previous phase complies with
operaling characteristics. This dimension of quality involes the required qualily standards.
2a5 3 15 : £ Iy anked ; R
mf.n;t;rabk, gmih-u“”.' bande cin ceusly be, S It includes the following activities:
objectively on individual aspects of performance

Features: Fealures are additional characteristics that enhanc
the appeal of the product or service lo the user.
Reliability: Reliability is the: likelihood that a product will nd
fail within a specific time period. This is a key element for uses
who need the product to work without fail

e
i o of
Quality managerment
process
dicating
? ' i ! e ! g Perceived Quality: Percejy, enls the

1
Gualt camdty n rooeT .
oo e to a good or service based

Fig: Quality management and software developmeny

: ¥
on indiregy

that BNSures
: that
N defineg o slanuardiz:d

« Process definition and implementation
* Audiling
« Training
Processes could be:
s Software Development Methodology

Conformance: Conformance is the precision with which £ « Project Managemenl

product or service meels the specified standards. + Configuration Management '
Durability: Durability measures the length of a product’s e Requirements Development/Managemen
When the product can be repaired, estimaling durabilty Estimation

more complicated. The item will be used until it is HOW) Software Design

economical to operate il. This happens when the repa Tesling

and the associated costs increase significantly.

|
Software E°
* Software Engineering __"'"/ I

Scanned by CamScanner

Once the processes have been defined and implemgmed’

Assurance has the following responsibilities: "alfll,
* dentify weaknesses in the processes
*= correct those weaknesses lo conlinually improye tha p, o
i ®
The quality management syslem under which the software 5t
crealed is normally based on one or more of the Fol[::n? i
models/standards: \"'”'lg
= CMMI
* Six Sigma
« 1SO 9000
Software Quality Assurance encompasses the entire SOftw
development life cycle and the goal is to ensure that the dev@iﬂbmere
andf/or maintenance processes are continuously improved to Prody, ni
products that meet specifications/requirements. Ce

The process of Software Quality Control (SQC
Software Quality Assurance (SQA).

SQA s generally shortened to just QA

) is also governgq by

Software Quality Control

Software Quality Control (saQc)
in software products.

~ Software Quality Contro| is limited to the Reviewfresting
phases of the Software Development Life Cycle and the goal js
to ensure that the products meet speciﬁcatmnsfrequiremenm.

» The process of Software Quality Control (8QC) is govemed
by Software Quality Assurance (SQA).

~ While SQA is oriented tow
lowards detection.

Itincludes the following activities:
Reviews

* Requirement Review

* Design Review

* Code Review

* Deployment Plan Review

* Test Plan Review

* Test Cases Review

is a set of activities for ensuring quality

ards prevention, SQC js oriented

Testing
* Unit Testing
* Integration Testing
* System Testing
* Acceptance Testing

ference between Softy,,
I ’\;}arﬂ

_Ware §
) ualit C‘.ontroli\w
- ang
ftware Quality Assuranm)
i (SQA) _ Sotware Quai

Sot

~eah is a sel of activities for
; E,?;:rlmg guality in software
engineering processes (thay
Ljuimnlcly resull in quality jn :
software products). The actiyijies |
establish and evaluate the
pmcesses that produce pr_odu.cts: |
2. ILis Process fIDCu_SE_(_i:_ 2. Lis progu fotiseq
3 prevention oriented. Olused

13 Delection orgngpg

"4 Organization wide. = i"-_?@g_uc{-'mje:,l e
"5, It relates to all products that wij | 5. I relates 1o épﬂc'.fm-.:h
ever bo crealed byaprocess, . | ey o
| 5 The activities c_arried are: 6.The ac'iv'lfi;as_c;_m;a;;"'
« Process Deft_mtlon and i Reltas
Implementation s
i . 5
« Audits esling
« Training

9.3 Software Reviews

A software review is a process or meeting dusing which
a software product is examined by a project personnel, managers
users, customers, user representatives, or other interested parties for
comment or approval.

» A group of people carefully examine part or all of 3 software
system and its associated documentation.

i i
> Code, designs, specifications, test plans, standards, etc. can
be reviewed.

Software or documents may be 'sianed off at a! rewi\:sm
sianifies that progress to the next development stage
approved by management.

Phases in the review process o o

% Pre-review activities: Pre-review activities
review planning and review DFePafa'Jf’”- eaing, an ubor o

% The review meeting: During the rgv;e:d should ‘walk through
the document or program being revie

the document with the review team.

= I N il eI

cemed with

Software Engineering * m

Scanned by CamScanner

+ Post-review activities: These address the

ised during the review me eMs
issues that have been raised during the review Meeting ~ Ay
. Enor :
H‘ - i “Lofrection =
o L mdnideal 7 Review
"‘_\ preparation _meeting n o T~
3 ey ¥ = Improvemeny L\z?
 prepartion =5

- Pre-review 3ctivilies

-

Postreview Activitips
Fig: The software review process
The main review types are mentioned below:
1. Walkthrough
> ltis not a formal process.
> ltis led by the authors.
Author guide the participants through the docume,

to his or her thought process to achieve
understanding and to gathei feedback.

Useful for the people if they ?re not from the softwar
who are not used to or dannot easily understa
development process.

Is especially useful for high'e'r level documents like requiremen
specification, etc. %

.
The goals of walkthrough: }

s

* To present the documents both within and outside the software

discipline in order to gather the information regarding the topic
under documentation.

To explain or do the knowledge transfer and evaluate the
contents of the document.

To achieve a common understanding and to gather feedback.

To examine and discuss the validity of the proposed solutions.
2. Technical review

> s less formal review.

> Itis led by the trained moderat
technical expert.

ltis often performed as a

Nt accorg,
a Commun

€ discipling
nd Softwarg

s

o

or but can also be led by 2

peer review without management

participation.

» Defects are found by the experts (such as architects, designers
key users) who focus on the content of the document.

>

In practice, technic

al reviews vary fr ite i al to very
i ry from quite inform

)

K2 * Software Engineering
___‘_—__-_—______——__—-_—-_

he oals of technical Teviey-

To ensure thal an early stage the
correctly. Bchnica)

o

.. To access the value of technica) oS are Usay
" the product. Concepts 74 altery,
i . Tt L

& To have consistency in |hg USe ang 'e Ssin

concepts. ﬁreaentaum Wi

& e T

To inform participants about the teg cal

document. nical Conteny o the
lnspection

5 Itis the most forn?a! review type.
» Itis led by the trained moderatgrs.

> During inspection the documents are pr
> tharoughly by the reviewers beforg the 21:22:; 1 checkeg

3 Itinvolves peers to examine the product,

» A separate preparation is carried gy during whi

” 4
is examined and the defects are foung. 9 Which the prodycy

% The defects found are documented in a logg)

5> A formal follow-up is carried out by the mod
criteria.

The goals of inspection:

% Ithelps the author to improve the quality of the document under
inspection. _

< It removes defects efficiently and as early as possible.

< ltimproves product quality.

4 It creates common understanding by exchanging information.

% It learn from defects found and prevent the occumence of
similar defects.

Differences between Inspections and Walkth_f_""_h

Inspection '. ﬂﬁﬁm_“’_”gﬂ—-—-
1 Inspection is a formalized method | 1. ‘j\'an‘“‘""“g:e:n:]}u |
| ofimproving a work product that | informal g
deserves careful consideration by evaluah:; iy
- any organization concemed withy | - PrePa”? S
. the quality of the product they

ng list or issys og,
erator applying exit

{
1
]'.l his.

s 0 o

i = I, s Iiated by P2

L2.Itis Initiated by the project team__1 255" o BB
saﬂwamﬁﬂw

Scanned by CamScanner

} 3. Planned meeting with fixed roles | 3. Itis an unplanney

| assigned to all the members | approach,
|_involved b SO . :

Ii 4. Reader reads the product code. | 4. Authar reaqS the F’rodd 4
| Everyone inspects it and comes code and h|§ team at?

| up with defects, comes up with def@ms
L__. i o ___ | suggestions Or

| 5. Recorder records the defects _' 5. Author makes g n.c.;.lé of ~
defects and SUggestion

|

MMECECRGS: v i | offered by team mate
6. Moderator has a role in making ! 6. Since it infonnajl th

[sure that the discussions proceed no presence of

_on the productive lines moderator.

|
=

Erejg

[9.4 Formal Technical Reviews]

Formal Technical review is a software quality assurance activity
performed by software engineer,

Objectives of FTR

1. FTR is useful to uncover error in logic, function and
implementation for any representation of the software,

2. The purpose of FTR is to ensure that software meets specifieq
requirements.

3. Itis also ensure that software is represented according o
predefined standards,

4. It helps to review the uniformity in software development
process.

5. It makes the project more manageable,

~ Besides the above mentioned objectives, the Purpose of FTR is to
enable junior engineer to observer the analysis, design, coding and
testing approach more closely.

» Each FTRis conducted as meeling and is considered successfully
only if it is properly planned, controlled and attended.

Steps in FTR:

1. The review meeting

> Every review meeting should be conducted by considering the
following constraints:

1. Involvement of People: Between 3 and 5 people should
be involved in the review.

* Software Engineering -

2, Advance preparay, ”
but it should be very Shot anCe.u,ep

Aray;
waork for each Person can belh;l is a4 lh:_hon
3, Short duration: The hicet Dem in thyg

should be less thap twa houlli_Urat.u,._ oy

attemplin o rey
Rather than g Teviay, "
are conducted for modules g 1oy shri:ntsra deg;
. Thefocus of the FTR s o ark pr, *':T{
7 to be reviewed). The reyig,, Meeting ig a?fm‘”afemr-.:w,
leader, all reviewers and jhe Producey, 0ed by, -onent

. . L la-..i‘m
The review leader is responsiblg fo, evaluay
its deadlines. ng for o

The copies of product materig) are then distrp,

The producer organizes "V~’31kthrough' the Edig iewers
the material, while the reviewers raise (e | o \?xg!e._n:ng
theirs advance preparation. SSUES baseq

One of the reviewe_rs become recorder wig |
important issues raised during the Teview, Wz?::d: &l the
discovered, the recorder notes eacl, SO are

At the end of the review, the altendeeg decide
accept the product or not, with or without modificati
2, Review reporting and record keeping

7 During the FTR, the reviewer actively records all the issyes that
have been raised.

» Atthe end of meeting these all rajseq ISsues are consofidateq
and review issue list is prepared,

Finally, formal technical review summary report is produced.
3. Review guidelines
Guidelines for the conducting of formal technical review must
be established in advance.
» These guidelines must be distributed to all reviewers, agreed
upen, and then followed.
For example, Guideline for review may include following things
% Concentrate on work product only. That means review the
product not the producers.
* Setan agenda of a review and maintain it o
When certain issues are raised then debate of arg:tl.some
Should be limited. Reviews should not ultimately resuls
hard feelings.

K______ Software Eng'ﬂ“”"g ‘m

W

ihether 1o
n.

.,
o

Scanned by CamScanner

Find out problem areas, but don't attempt tg s
problem noted.

Take written notes (it is for record purpose)

Limit the number of participants and insists |,
preparation.

Develop a checklist for each product that
reviewed.

Olve ey

pon ag Vance

is [ikely la he

FTRs in Order 4,

% Allocate resources and time schedule for

maintain time schedule.

< Conduct meaningful trainings for all revi

EWErS in order to Mak
reviews effective. e

% Reviews earlier reviews which serve a

s the base for the CUrren
review being conducted.

[9.5 Formal Approaches to SQA
Formal approaches to SQA are 2
of mathematically based techniques for the ass;

The use of formal metho N is motivated

the expectation that, as in other engineering disciplines,
performing appropriate mathematical analysis can contribute 1o
the reliability and robustness of a design,

&6 Statistical Software Quality Ass urance l

Statistical SQA is a techni
fashion.

particular kin,
urance of the softwarg
ds for software desig

que that measures the quality in a quantitative

It implies that information
categorized and an attemp
underlying cause,

. about defects is collected and
t is:made to trace each defect to

» ltuses Pareto Principle to identify vital causes (80% of defects

can be traced to 20% of causes) and moves to correct that
problem that have caused the defects.

[9.7 Software Reliability

Software Reliability is the
for a specified period of ti
»

E

probability of failure-free software operation
me in a specified environment.
It differs from hardware reliability in that it reflects ihe design
perfection, rather than manufacturing perfection.

* Software Engineering —_ -

Ery

lexity of softwarn ;
high compexily Ware i
Tfhgonware Reliability problems,
- fiware reliability can be me, ure
S;ng historical and developme !
h: o of failure rated Ovter the Produg .
i g
e care and a software product are shownin he figu,ewll?;h‘? Yypic)
r-ardwthtub curve. ; Sknown,
a5 B2 \ntub curve for the hardware rehability can be shown
pa as:
he
i Burn in

Useful Life

Failure Rale

similarly, the Bathtub curve for the software reliability can be shown as
inthe figure:

Test'Dobug Useful Lite Obsolescence

Upgrade
pgrade

u
Upgrade

[l
'
[
1
i
'
'
'
1
i
'
1
1l
1
1
1

1 1
l E ':
| ; i .

Falure Rate

i -[-_---,-_-_-_.‘
Time

A aracteristics
Software reliability however does not show the same ch

h 1 - ot ite highest during
Smilar as hardware. For software, the failure rate is atits highest¢U

[are idert
Megration ang test. A the system is tested, more emors
nd removed resulting in reduced failure rates.

Software Engineef"d B
___;______—________

Scanned by CamScanner

Software Reliability Metrics
Reliabilily metrics are used to quantitatively express the oy
software product. Some reliability metrics are:
1. MTTF (Mean time to failure): It is the
observed system failures.
2. MTTR (Mean time to repair): It measures the average
takes to track the errors causing the failure and then to fix lh;"’& i
3. Availability: Software availability is the probability that apr

is operating according to requirements at a given point limgg
given by: g

atliljw, o
L]

average timg bet,
Ben

I'arn

It
Availability = MTBF/(MTBF+MTTR)

Hence, Reliability can be calculated as:

Reliability = MTBF = MTBFI(1+MTBF}

B.B A Framework for Software Metrics

Software metrics is a measure of some pro
or its specifications..

Good quality, reliability and maintainabilit
enterprise applications and have a huge i
economics of the business powered.

In framework for software Metrics, Measures, Measurement, Metrics
and Indicators are often used interchangeably:

perty of a piece ofsol’rwa_-e

Y are important atributeg g
mpact in the success on the

Measures: Provides a quantitative indication of the extent,
amount, dimension, capacity, or size of some attributes of a
product or process.

3

-,

Measurement: The act of determining a measure.

* Metric: A quantitative measure of the degree to which a
system, component or process processes a given attribute.

% Indicator: A metric or combination of melrics that provide
insight into the software process, a software project or the
product itself.

Aclivities of a Measurement Process:

* Formation: The derivation of software measures and metrics

appropriate for the representation of the software that is being
* considered.

ot

53

Gy

Collection: The mechanism used to accumulate data required
to derive the formulated metrics.

* Analysis: The computation of metrics and application of
mathematical togls.

@- Software Engineering

Jretation: The evaluatior of iy

r s i 3
& ||1tl|‘-:]1|11 into the quality of the repy

N an
ins

1rie i
DSDntahon
ack: Recommendationg deriveg

10 the

Elfen o Qain
i Ffefﬁiuﬁl metrics and passed op
ol P

eam

Ne intg
fl “Threay;
Soflwarg ’3'?!'%'.%?-‘:"
20D My

_—cs for Analysis and Desic——
29 wet” S19n Modg)
b trics for ity deli ed: It)
re™ _ nctionality delivered: Provides an i,

{F.Ijqclioﬂam)" that is packaged within the s
Y tem Size: It measures the gy,

the analysis are:

direct Mea

Sure
oftwars ofthe

erall size
5 . i . of the o, i
j:ﬁned in terms of information available as part of the :n’f, 1‘”_1
model. o

: specificaticﬂ auality: it Provides an indicatign
and completeness of a requirements specificat;
rrics for the design are:
Architectural metri_cs: Provide an
the architectural design.
component-level metrics: It measures th
software components and other characleris
bearing on quality.
Interface design metrics: It focuses primarily on usahility
+ Specialized object oriented design metrics: It measyres
characteristics of classes and their communication ang
collaboration characieristics.

of the Specific
on

eme indicati

re:. indication of the Quality of

& complexity of
tics that have 3

& -

9101SO Standards |

Te mission of the ISO is to promote the development of
sendardization and related activities to facilitate the inl.;ma_hona'l
Bthange of goods and services and lo develop cooperation inthe
stheres of intellectuals, scientific, technological, and economic actvly.

» ISO/IEC 9126 Software enginesring — Product qualy was 20
international standard for the evaluation of software quality.

* Ithas been replaced by ISO/IEC 25010:2011.

The fundamental objective of the ISOIIEC 912¢

address some of the well known hurnanl bll

adversely affect the delivery and perception

developmem project.

\—/4 Software Engineering :m

v

6 standard is to
ases thal can
of a-software

Scanned by CamScanner

The standard Is divided into four parts

v Itis the sign of customer n:cmhdence_l This certificatign b | T
become lhe standard for international bidding. %

¢ It highlights weakness and suggests corrective measures 1,
improvements.

¥ It makes processes more focused, efficient, and cost effective

¥ Itis a motivating factor for business organizations.

¥ Il helps in designing high quality repeatable software produg

| 9.11 CMMI 7

The Capability Maturity Model Integration, or CMM|, is a process mods
that provides a clear definition of what an organization should doto
promote behaviors that lead to improved performance.

Difference between CMM and CMMI

> CMMis a reference model of matured practices in a specified
! discipline like Systems Engineering CMM, Software CMM,
i People CMM, Software Acquisition CMM etc., but they were
difficult to integrate-as and when needed,

» CMMI is the successor of the CMM and evolved as a8 mor®
matured set of guidelines and was built combining the bes
components of individual disciplines of CMM (Software CMM,
People CMM, etc.). It can be applied to product manufactui®
people management, software development, elc.

-Soﬂware Engineering —

‘ gmatt’
Why is ISO certification required by the software indysg iundation

"

1 ac 15 aboul the et
3 & jpsaribe 1 oltermre _—
assifies softwar quality in a e M € ciratad de = NG
1. Quality madel clas \p,nr';rlnri-'.hr:f. as lollows lureg t ’ CHEMmM Integr Aac, CERCHbes. hor safy ™" e o
characteristics and sub-characle " "y as = pring. CMMI als6 incorporatpg g "3 ang 0
» functionality png sroduct Davelopment and he Rt dly o ang pl:'-\r'.m
and P° PRt iy |
« Relinbility i ctives ing
« Usability "jlob of CMMI are very cbyvious. The, -
(M etives @ T B8 a3 fepg,
« Efficiency P 08 quality products of services ey
& roUUs
« Maintainability s P e value for the stockholders
" credt il
= Portability & Enhél”‘:” custormner sati sfaction
2. External metrics: External metrics are applicable (, iy ncrease markel share
f ' i | I ; -wide recognition f "
software i . an industry-wide recog nior excallenes
. . . ain & Halv Y
3. Internal metrics: Internal metrics are those which do g " o GF ity o
i i 1 | ma
software execulion (static measure). M) —))
i trics: Quality-in-use metrics a o ity level 15 @ well-defined evolutionary plateau toward achygyre
4. Quality in use metrics: Qualily \rICS are only aygye, | 4matv frware process. Each maturity level provides 3 e 0
when the final product is used in real conditions vy yre SO g 127 In the

for conlinuous Process improvement,

— e shows the maturity levels ir

. following image s 5 Y JEVEIS in a CMMI stageq

G o0

presenlallo e
LeetS |

[[Optimizing <

Leveld Processes me

L P ’Q.Ia.'ﬂif.lll‘delr Managed ar

Level 3

e | and is olten reactve
\Managed,

. 'Lewil | Processes unpredicable

| “Initial ! pootly conuolled and teactve

CMMI models with staged representation have five matury levels
tesignated by the numbers 1 through 5. They are:
Maturity Level 1 — Initial:
Al maturity level 1, processes are usually ad hc[rc
rganization usually does not provide a s'a
nce a
SUC‘{ESS in these organizations depends on the O??Ee:!?e use of
€r0ics of the people in the organization and Mo

Proven processes.
gineerll'li 'm

and chaotic. The
ple environment

U En

Scanned by CamScanner

m il Murmi. -

Maturity level 1 organizati

ons often prodye
that work; however,

they frequem!y excef}emdu

o conmit sy oL Tl e
, aba Processes in the time of oY Qg 3
able to repeat their past successes. ¢ Crisis, agﬂ&ﬁt
Maturity Level 2 — Managed: ; nqé
At maturity leve| 2, an Orgariization
the specific ang generic goals gf the Matuyrit . iy
areas. In plher words, the Prajects of the Organizay oy 2 ;ﬂ 3
al requirements are Mmanaged and thay Proce lon ave g
Performed, measured, ang controlled. 5SS are nla::'““"
At malurity leve| 2, requirements, Processeg :
semces are managed, The status of the W(;rk ork orody e
de!rver_y of services are visible to Mmanagemeny oducts Uﬁt:a
Cor_‘nrnllrnents are establisheq among relevant o li“ e bong
fevised as needeg Work products v s .

and are controlled.
Maturity Level

3 - Defineg:
At :

Organization has achieyeg

of the Process areag assignedah

At Malurity |eyg 3
' Processes gre we
underslood. and are described in standards pro
erel, Processes 5 1yp=’cai!y desc'ribe
Ously than g maturity |eyg 2
rn_anaged More prg -
ationships of th

characteriZed and
cgdures. !Dols'
din more delafland
! maturity level 3
'3 an understangin,
Ivit

i ies and detaj
s waork Products, ang its services -

Quanlilatfve Objectives for Quality ang

: Process
d used as critgriy | o Dfl-‘hf'fnrmanoe are
e;twes are basec!onlher.ee sor?h € processes.
alion, and progess g € customer, end

SMenters. Quality and

— s

* Software Ehgineen‘ng

ces are understood in statistical terms and are
o parforﬁ;zul the life of the processes.
hrou .

~aged !t | 5 — Optimizing: _

4y LEVE n organization has achieved all the specific

S'Saareas assigned to maturity levels 2, 3,4, and

f the pro;:cﬂzoals assigned to maturity levels 2 and 3.
genen

ntinually improved based on a quantilali\:e
are :':Ome common causes of variation inherent in
ing ©

aturity level
0215
% and the
es

{Ocesﬁ
Fu}rldefstand
(0cesSes:
This level

through

[i i erformance
continually improving process p r
{Oilrisesiﬁ;emental and innovative technological
bo

improvements

wioied D Contiun,s srpemvement and

3t change The arganismion's

Preactivs, raliar E1an reactive, Cr g aion wek

Y r‘

S et WA BRw e
eeCTILg MG Vg 1o
taehosi

eamsred

Hanagad an 1he profect level. Pueon
clasrad pa-fomed meauren,

”

g Unprassciable and reatlive.

. Rebinded voom remoteted bul

Feory meged el ons Luarget
Fig: summarized view of CMMI levels

Difference between CMMI and ISO T |

i CUS | ification tool |
*best | 1,180 is a cerlificat

|1.CMMIla g sel SR B g busresses |

| ractices" derivec A6 "hose procasess |

'| ?ndustryleaders and relates to | bnform to the taid down |

| product engineering and o Snduts T

. |
e e aprooms o[2501 an st sandard.__
T SF!SCI is flexible and i

applicable to all

| 2.CMMI is a process model. __
| 3.CMMIis rigid and exlends only

esses N |
1o busines d_e\felop_:ng‘ e industres.
l software intensive systems.. - MANTE
! X
Software Engineering "
e
] d & £ :-i

Scanned by CamScanner

- 4. CMMI compares the existing _
| processes to industry best | ofexisting Pracesses |,

| practices | confirm to the spegifi |
| | IS0 requirements, |

B

| 5. CMMI is more focused,
' " complex, and aligned with
! business objectives

| 4 ISO requires adjustmém R]

—_

' 5.180 is flexible, wider iy |
scope and not direclly '
linked to business

! objectives.

|
——— ———

6. It provides grade for process

B

6. 1SO provides pass orfa;f

!____nj_alurjly_) criteria. N |J
[7.1t recor;neéls the mechanism | 7.1SO does not specify T
! for step by step progress | sequence of steps |
l' through its successive maturity | required to establish the ['
plevels. | aquaysystem |
j 8. CMM is specially developed for |. 8. It applies to any type nf‘_'l'
__ Software industry L

{ 9. CMM has 5 levels: "1 9.1S0 9000 has no levels |
! Initial | ||
Repeatable |[;'
Defined :5 i
Managed j |
AR SR AR

912 SQA Plan

The SQA plan is a document that specifies the process to be followed
in each step of the software development and the procedures to be
followed in each activity of such a process.

The objective of SQA plan is to ensure that the development of the
software is based on a course of action and that from time to time the
development can be measured controlled and monitored with respect
to such a course of action-so that the end product is as per the
specifications. ' :

The plan is governed by several quality standards, policies and models
such as IS09000, SEI CMM and Baldrige,

/é,iﬂg’gbftware Certificatiop

are certification is the certificayjo that g
goftweé of software systems in such Wa [
safet ndent authority with minima trust j

fﬂdedpm the certification process itself,
e e
usbuilds on existing software assuran
It

Hniques but introduces the netign
tec! h contain all information necessary
“;T;e demonstrated properties,

0

software certification comprise.s a wide ran

and informal assura?nlce lechnrqygs, incly

compliance with exphc:n fsafety p?iICIES‘ System simulation, testing, eoge

reviews and human “Sign Offs,l and even references |, Supporting

iterature, consequently, the ‘cemﬁcates can have differeny lypes ang

the certification process requires different mechanisms,
(o)

o the rg
at it Can bE ¢h

N the techn; ’ edb)'an
Ques ang log
H

Ce, Validation
and verp...
of explicit Softyar Erfication

: fificat
foran mdependenl assessrn:

98 of formg], Semi-foma)
ding formgy verification o

Scanned by CamScanner

I 3ctWities |

. : .)
CM... Vcrsml"m"‘i’o‘fn%‘;':g:g Ke;nmg track of .
" of syste . and engy; Muliplg .
gomponents by different develop uring thgt chan, e Versiong

ers do " es mad
other. . "ot interfer iy eeaé: |
System building: The Procesg of assempr
components, data and libraries. then compy: Mbling Progran
an executable system. Piling these reate |

’,
o

Change management: Keeping {74 of

to the software from customers anq 4 Welg:guests for Changes
costs and impact of changes, ang deciding y rking oyt the
be implemented. ges shoylg

& Release management: Preparing softwa
release and keeping track of th
been released for customer yse.

-
o

e for ey
€ System versions that have |

management |

- AN
Configuration ¥ o S |

V4
» T \ 1
Management] TR =1

; © Version ™ Release \
; . 'x.manageme:\l/" ' management /
| 10.1 Configuration Management Planni Srwgreom e
(. g M agement I-an-mng Fig: Configuration management activities
Configuration management is a technique or discipline to systematically CM planning
manage, organize and control the changes in the documents, codes, > Starts during the early phases of the project

artifacts and other entities during the development life cycle. > Must define the documents or document classes which are to

» It is concemed with the policies, processes and tools for be managed (Formal documents).
. managing changing software systems. . > Documents which might be required for future SYSfeFCfI'
1 ¥ 4 5 + H e
' » Software systems are constantly changing during development maintenance should be identified and specified as manag
du documents,
and use. > D ts to be managed and 2
> You need CM because it is easy to lose track of what changes d;::nes the types Ef doclmen
and component versions have been incorporated into each % Ument naming sc eme.‘ ity for the CM procedures and
system version. > cDrZﬁrt]'es “"fh;’ ta':FS responsibility for .
5 -) ation of baselines. : L
» CMis essential for team projects to control changes made by > Defines polic?es for change control and version managemer
differen ' intained-
t developers ’ > Defines the CM records which must pe maintal E
* Software Engineering Engineeri"d* |

__‘______4____ Software

A .

Scanned by CamScanner

' 7
> Describes the tools which should be used to assist

: the
process and any limitations on their use. CM
CM terminologies:

v Baseline: A baseline is a collection of component versions i,
make up a system. Baselines are coqtrolled, which Meang lhat
the versions of the components making up the system Cannm
be changed. This means that it is always possible to reC’eateo
baseline from its constituent components. 8

v Codeline: A cpdeline is a set of versions of 3 soft
component and other configuration items on which
component depends.

Ware
that

v Configuration (version) control: The process of ensuring thgy
versions of systems and components are recorded and
maintained so that changes are managed and all versiong of
components are identified and stored for the lifetime of the
system.

v Configuration item or software configuration item (sciy,
Anything associated with a software project (design, code, test
data, document, etc.) that has been placed under configuration
control. There are often different versions of a configuration
item. Configuration items have a unigue name.

v’ Mainline: A sequence of baselines representing different
versions of a system.

v Release: A .version of a system thal has been released o
customers (or other users in an organization) for use.

¥ Repository: A shared database of versions of software
components and meta-information about changes to these
components. i

v Version: An instance of a configuration item that differs, in
some way, from other instances of that item. Versions always
have a unique identifier.

v" 'Workspace: A private work area where software can ‘be
modified without affecting other developers who may be using
or modifying that software.

10.2 Change Management

| e

The change management process is concerned with analyzing e
costs and benefits of proposed changes, approving those changes

changed.
» Software Engineering

that

are worthwhile and tracking which components in the system have been

—.—-—''-.-—‘-"‘

Organizationaf needs and reQUiremg
n

. f a system, bugs h "
jifetime © ' PUGS have lange gy

have to 2dapt Lo changes in thejy envif:);;pa'md ang svngleTna
. Chang€ management is intendeq ent, N
7 gvolution is @ managed process ang pri e that System
most urgent and cost-effective changes, = TV 1S Given to the

Mmm‘sis
Fa The consequences of not making the ch

‘.: The benefits of the change
., The number of users affected by the change
The costs of making the change

The product release cycle

ange

o

»,
[xd

10.3 Version Management

Version management (VM) is the process of kee
sersions of software components or configu
systems in which these components are used.
» It also involves ensuring that changes made by different
developers to these versions do not interfere with each other.
» Therefore version management can be thought of as the
process of managing codelines and baselines.
Codelines

» Acodeline is a sequence of versions of source code with later
versions in the sequence derived from earlier versions.
» Codelines normally apply to components of systems so that
there are different versions of each component.
Baselines

pi_ng track of different
ration items and fhe

Abaseline is a definition of a specific system.

> The baseline therefore specifies the component versions ﬂ_wat
are included in the system plus a specification of the libraries
used, configuration files, etc.

Baselines may be specified using a configuration language,
Wwhich allows you to define what components are included in &
version of a particular system.

Baselines are important because you ofte

Specific version of a complete system.

;%r- $Xample, a product line may be instantiated S0 tha
Vidug| system versions for different cus

e R SO Englneerin

h T8

> n have lo recreate @

t there are

tomers. You may have to

ge 131

Scanned by CamScanner

recreate the version delivered to a specific customer if, 1, -
customer reports bugs in their system that have to be rgp, 2™
&

d Pln
Codeline (A)

g

Baseling - Vi

[A ALT Al2 A3 A o CI_‘!_‘!__
Codeline (8)) TERi o
B —B11—*>B12— »B13 -
Baseline - V2
Codeline (C) :
Libraries 2nd external components L 2 iy
U L?._ E" Ex2 Mainline 3
Fig: Ccdelines and baselines
Version control systems
‘;’_ersfon c,c.mrqE (VC) systems identify, store and controgl access g
ifferent versions of components. There are two types of mod::

version control system:
& Centrallized systems: Here, there is a single master TEpositen
that maintzins zll versions of the software components thaf are
being deveioged. Subversion i a widely used example of
centrzlized /C system. e
Distributed systems: Here, the multiple versions of the
component regository exist at the same time. Git is 2 wi
used examgple of 2 distributed /O system
Key features of version control systems

* \Version zrd release identification

N

= Change history recording
» Support for independent development
* Proedt suicoon
e Sterzge manzgement
Eranching and Msrging
Fatther than 2 linezr sequence of versions thzt reflect changes 1o 1%

st n
Carmponent Oyer L, tere mzy be sevars! independent sequUences.
Eranching s the creztion of 2 new oodeline from a version in an eXisig

poteline. The new codeline znd the existing oodeline may then devd®

irdependently.

[£7] » Sofware Engingering

i« the creation of a naw version of
1prging = i il
e ng separate versions in different codefineg Th?:,e, Component

]!
’“_”’,'3 peen created by a previous branch of the of elineg m;,-;
:',a.,,o!ved ® O the codefines
©, This is normal in system develgpmen uh
=L, (!

£re different

developers work mdependentl; on differe
ierent versions
ks of the

source code and so change it in different yaye
. e 3
Al some stage, it may be necess
c 2ssary | -)
branches lo create a new version of 2 D;n:m::f ijaim
all changes that have been made. =t that includes
» |If the changes made involve different aMlS of the code. (e
component versions may be merged Bum;!;m;:' b‘
combining the deltas that apply to the code iy oby

Codefine 2.1
<branch>
= V2Ll —»_ V213
Codeline 2 1
e

V20 —» V21 Mciinit 2o (PREGS
s [T ——re
| — V22 —» V23
|<branchz

Vi —= VLI —»= V1.2

Codeline 1
Fig: Branching and mergng

Version identification
Procedures for version identification should define an unamoguous
wzy of identifying component versions
Three basic technigues for component identfication are
1. Version numbering
Simple naming scheme uses a linear dervalion.
eg V1,V1.1,V1.2,V21, Y2.2Zelc.

» Actus! derivation structure is a tree of 3 1€

SeqUEnce
~ Names are not meaningful.
> Hierarchiczl naming schems may be betier.

twork rather than 2

2. Attribute-based idenﬁﬁcgﬂon . : e
Ltiriputes can be assodatedlwm a version with the combinzt’
ahributes identifying that version. E
e —— Software Engineernd *

Scanned by CamScanner

» Examples of attributes are Date, Creator, p,
Language, Customer, Status etc. ram%u

» More flexible than an explicit naming schemg ¢

retrieval; Can cause problems with uniqueness. \re,ﬁ&
» Needs an associated name for easy reference, ;
3. Change-oriented Identification
Integrates versions and the changes made lo create thegg Versio
s,

» Used for systems rather than components,

"

» Each proposed change has a change set
changes made to implement that change.

» Change sets are applied in sequence so that in prin
Ll C'

varsion of the system that incorporates an arbitrar ke,
changes may be created. Y st

o dascﬁhes

Rel
Development Pre-release St
versions versions R1.0
Ry
Version 1 |: T
Ly —sV10—svia, PVL2——aVI3
CE s
Version 2 | - :
2 i a3 G
Version 3
Ew
Fig: Multi-version system development
10.4 Release Management]

A systom releaso is o version of o softwar istri .
b, @ system that is distributed o

» Roloases must incor

porate changes fo b
orrors discovered by 9 rced on the system by

users and by hardware changes.
Thoy must also incorporate new system functionality.

» Release planning is con '
cerned with when to issue a system
version as a release. P :
For mass markel softw
release: major release
minor releases, which
been reported.

v

are, it is usually possible to identify two types®
s which deliver significant new functionaliy,
repair bugs and fix customer problems that have

* Software Engineering —— m o

fware of software product lines, rele
Ustom S e prOdUCEd for each customer and j
c everal different releases of the

35eS of the sygten,
Ndividya custom
System at the

Brg

ind S
I,;a)’he unning ame

i lease planni
e sinﬂuenc‘“g system release planning
a6 r Compemion

’ ; irements
keting requt
[Mar

piatform changes
Technica] quality of the system

L]

0.5 System Building &

1 N i

l puilding is the process of creating a complete, executable

ystem by compiling and linking the system components, extemal

i 1?;25 configuration files, etc.

nbral | puilding tools and version management tools must
g communicate as the build process involves checking out

component versions from the repository managed by the

version management system.

The configuration desc_rip_lion usedt

used by the system building tool.

System

o identify a baseline is also

| .| i bf;!

i Configuration| Executa |

5232 fles | | e | L. g
i e :

\ l e e

e | | Executable |

| Automated | !

Data files ———— 1,,;ild system | | target SY“?“" |

1 Compilers |, ! Test results
| andtools =

ol =
| Libraries

re used 0

\& |
)
]

0.6 CASE Tools for Configuration M2

on programs, which @

=

1

CASE tools are set of software applicatl

automate SDLC activities. il
> CASE tools are available 10 sgppo i
> CM processes are standardized @

defined procedures. ,m
Software E"”"“M
R

M actvites:
Jolve applyind P

Scanned by CamScanner

» Mature CASE tools to support configuration,
available ranging from stand-alone toglg

workbenches.
CM workbenches
Open workbenches:

a
to int

By
SOratey ¥,
O

Tools for each stage in the CM process are integ,. i
organizational procedures and scripts. It gives nEXibilily t.h"ﬁugh
in |

selection.
Integrated workbenches:

Provide whole-process, integrated support
management. More tightly integrated tools so easije
the cost is less flexibility in the tools used.

Change management tools:

Change managementis a procedural process so it can
integrated with a version management system,

Version management tools:
These tools mainly fulfill the following tasks:
* Version and release identification
* Storage management
* Change history recording
* Independent development
* Project support

o

* Software Engineering

for
rto uUse

conr’gul'aunn
: H°Weve,

be Modeley ang

Object Oriented
Software Engineering

[11.1 Object Oriented Analysis

sizes 0
Object-oriented analysis is the proc.ess that ebr;;?:ad Kpeae
describing the objects or concepts in the pro S ity
> Itis the use of modeling to define and analyze
necessary for success of a system.

ically by class,
ith one anather, typical
ms that interact with on kT

n finding and

» ltgroupsite _
data or behavior, lo create a rm:!denlfalg_’.a ey
the intended purpose of the system _ e B

» Emphasizes.an investigation of the problem

rather than a solution. Ay
Steps/Activities for Object oriented Analys
1. Analyze the domain problem
2l Describe the process of systems

3. identify the objects S e 378

————

Scanned by CamScanner

4. Spocily attributes
5 Defining operations

6. Define and establish Inter-object Comlmlnicnlion

|_11.2 Object Oriented Design
Object orientod dusign Is the process that e
software objects and how they collaborate 10 fu

IUis the process of planning a &
the purpose of

machanium

mplmsimg on defy
Ifill the raquimmanaing
yslem of 0 °bJuc1 d
solving a software problem, o
Emphasizes o conceptu

that fulfills \he requireme
* Trang

=

al solution (in soflwarg ap,
*nts, rather than jis implem
iforms the analysis

model createq usj
design model that seryes as
construction

Steps for Object arlente

1. First, builg obj
2. Then iter

Warg)
eNltatigy

ng 0oa intg a
a bluepring for soflwam

d Design

ecl modol baged o objecls
ate & rofine mode|

& rciationship
Design & refine cl

a,

asses
b Design & refing atlributes
€. Design & refine methogs
d

Design

& roline slructures
- Design & efline assog

ations

responsibliities
design

Ve stem.
ind : a software sY
Pty .ol B¢

i ling language
{ dardized mode!
. e d document
|anguage (UE?IY) visualize, conslruct an
5 to speciiy
fiet (.vplOP(’ >

i ented software
t aspect involved in object-ori
importan
i an

nt,
JJopme
devel i . G ——.
makes {hese a tation to create visual models

hic no
grap

S cution.
{s scalable, secure and robust in exe

et - rid objects
ms. ling of real-wo (
i Bl o7 et ted design
" isaswndar?e; in developing an object-orien
first s
as @
methodology.

portance of using UML
m

iali i * to exlel"‘ld
ibili Cia ll lion mecl SMs
Pr i te Iblhly al“ld S‘}E an
GV‘dea ex 1S Za h
i the core CG“Cepls.

i nguages and
independent of particular programming lang
It is inde
‘ developmenl processes.

P odeling
i nderstanding the m
i formal basis for u
3. Provides a
language.

t.
4. Encourages the growth of the OO tool&: m:orl:‘zepls e
I lopmen
ris higher-level deve iy
’ ?:;ﬂ)z?t?nraﬂons. frameworks, patterns and comp
Relations in UML
1.

: two
ion is established when
tion relalion is es s
latlon: An assocla : . The symbo
3?12::5 are connected to each other in any way. !

is formed as a collection of other
W o thﬂ ::1 c;::?e‘;a:ic;n relationship T;tga:zs:::::
g “3 ca"::a'uled a “has a" relationship. ‘I‘:edesuom‘ b
o iy alsilass even of the base c_:!assd o
el da?v?l?e relationship between b?o:: :ur; e
2’:{?;:\ E’:Zv‘a;:\andenﬂy even of the library is oA

G_

Software Engineering « I

Scanned by CamScanner

NModeling Diagrams |

by step workflow of
p :
3.

e
represents st
Composition: The com

) nents. in
niagra":amna\ compo functionality of a ?'::::ong
Position s a variation of ¢ agqr) F‘di-"“:s and .operam_' descnbt‘-zses and dependenci
relationship., Composition ilustrates that g slrong 1ifa.:aa“°n "oyl e Did oals as use C
present between thg classes. For example, i the rela Yelg s Use actors, 9
between department anqg university, the deparlrnems % Onghin i
of the university is deleted, t

te
and stal
of aC resents states

n 3 13[”‘5 Gases‘ iagram: Tep

0 Wal ne use " Diag

| ! a

4,

e M Sl cpresents interaction between
" ians'l"ic’" ‘cation Diagram: (; .-:esSages.
Generalization: It is the inheritance relation Wher, the h Ommumt.ﬂ 5 of sequence
Classes “inhgrip the commgen funclionality defineg in the p g ¢ in term
class,

ints.
s onstramn
b et uses on timing ¢
Breny obje piagrams: foc
g

n
ication betwee
‘ resents communicatio

E Timin e

Reaiization: Ina realization rEtatiOHShipl

interfar:e) defines

" am: es.
sequence D-.'cis'.(:'f a sequence of messag of a system model.
& . S ic views
One entity (5, ally g " objects in term tatic and dynamic v\ed composite structure
asetof funclionalities as acontracy and the Othey ms represent s \ass diagrams an
entity {ncrmaﬂy aclass) ‘realizes” the contract by implemenling the §uNL d‘ag_ra view includes ¢
functionality defined in the contract. e static
(--.-.-.-.-.-.-.-.-....

: jects,
sing obje
systems u
hasize static structure of sy
: Wwhich NP tions. biects and
.mag:la':; operations and rela ts collaboration amonge Oaiﬁ\.riiy and
. firibules. : resen uence,
€ divided intg o categorjes. athe dynamic \ne\:\f ‘:23 of objects through seq
: s
to interna
changes
in documen
Software Syslems ang are iny

i iagrams.
ting the architecturg o1 | yate machine diag
olved in the system being Modeleq.
[Different Structure diagrams are:
|

1. Structy ral diag

Structure diagrams are used

s

+ Class Diagram:

relalionships amon
Cnmponent Diagr
a software system
Deployment Dia
imp!ementatinns.

Object Diagram; Tepresents g Complete or Partial view of fhe
Structure of modeled system,
Packaga Diagram; repre
groupings ang dependency among the grouping.
2 Behaviora| diagram

represents System class, altributes gnq
g the classes. :

am: represe
and depengd

gram: descri

nts how COmponents arg Splitin.
Encies among the Components.

bes the hardware used in system

Behavior diagrams fepresent funclionality of s
emph

oftware system and .
asize on what Must happen in the system being modeled. The:
different behavior diagramsg are:

oftware Engineering -
$
m * Software Enginuarlng

iR

Scanned by CamScanner

11.3.1 Use case Diagram

s

ty Diagram

22 ActiVi

A use case diagram expresses how
a user might use an object or
system. In the diagram, the potenlial
user is represented by a stick figure,
called an “actor” symbol, and the
various use cases are symbolized by
oval shapes. Use case diagrams are
ideal for communicating the principal
functions of software systems, but
they also have other valuable
_applications.

ocesses from
E;rML diagrams

jor-based
are behavio
— " diagrams
P
harts M

ent checks into a hos

Example:

® Software Engineering

Onlfine Shopping System

Scanned by CamScanner

TalvoRy

Bl roe SO it Py it T

},
£

'1 134 gequence Diagram

sequence diagram Ishows how

ents occur in sequential order over
i’]\:e flow of time. Objects and actors
in the sequence are depicted with
several different symbols. As time
passes. the obl_ec'.s send messages
1o each other via arrows.

Example:

Scanned by CamScanner

Component diagrams fall under the
structural diagram Ccategory in UML.

They depict how various

components in a software system
are wired together to form a total

product. Component diagrams
include several main shapes,
including the rectangular

Component shape and the circular

ollj shape.

Example:

11.3.5 Component Diagram

e —

1,36 Deplo

yment Diagram:

nother
diagrams, . a
DePIOY";?ntstructurm dlag::,ngi
goub ot only the s re as
descrl put the hardwal
tem get their name from
well. They which software

showind v deployed by the

|

. P

ts ; isa
elemen Their main shape is
hardwar?ﬁree—dimansional hoﬁ
argen as a node, .Wh‘;
f:;:ezems the object doing the
_deploying
Examp[&:

Scanned by CamScanner

They ilustrate 1,

these is
a rect,
COmerg angl

havior diagram in UML,
ow opjecls Move
e via transition
an shape for
€ With founded

Calengay
not nvaﬂahb

124 Agile Developmeant.

i

Introduction to
Software Engineering
Trends and Technology.

Agile development model is type of Incremental model which results

! small incremental releases with each release building on previous
functionality.

'y

» Ilterative approach is taken and working software build is
delivered after each of iterations.

» The tasks are divided to time boxes (small time frames) fo
deliver specific features for a release. .

> Each release is thoroughly tested to ensure software quality is
maintained. :

» Used for time critical applications.

Sonware Engineering « I

5

Scanned by CamScanner

X - » Software Engineering

> i
Each buyjig Is incrementg|

olds all the fea in terms of features; the fing| buitlg

tures required by the customer.

> Extreme p,
4 rogramming (xp
agile developmen, lite c:rcie) nis'; L;::;llrremly the most well-knayn

Here j i
Is a graphicg| MNustration of the Agile Model:

Nextinerstion

Fig: The Agile model of Software development lifecycle

Advantages of Agile model:

1) Customer satisfaction by rapid, continuous delivery of useful
software.

2) People and interactions are emphasized rather than process
and tools. Customers, developers and testers constantly
interact with each other.

3) Working software is delivered frequently (weeks rather than
months).
4) Face-to-face conversation is the best form of communication.
©5) Close, daily cooperation between business people and
developers.
6) Continuous attention to technical excellence and good design.
7) Regular adaptation to changing circumstances.
8) Even late changes in requirements are welcomed

jsadvantages of Agile model:

1) In case of some software deliverable,
ones, il is difficult 1o assess the effor |,
of the software development life cycle,

2) There is lack of emphasis on p
documentation,

3) The projec! can easily get taken off track if
representative is not clear what fina| o et tlha?; e;u;t:r::aer

4) Only senior programmers are capable of taking the kind- {
decisions required during the developmen process. H encee'L
has no place for newbie programmers, unless combingd w't:1
experienced resources,) :

When to use Agile model:
4+ When new changes are needed to be implemented. New
changes can be implemented at very little cost because of the
frequency of new increments that are produced.
To implement a new feature the developers need to lose only
the work of a few days, or even only hours, to roll back and
implement it.

D

5. BSpecially g |

Bquired the arge

heginn‘mg

ecessary Cesigning ang *

| 12.2 Extreme Programming

Extreme programming (XP) is a software development
methodology which is intended to improve software quality and
responsiveness to changing customer requirements.
As a type of agile software development, it advocates frequent releases
in short development cycles, which is intended to improve productivity
and introduce checkpoaints at which new customer requirements canbe
adopted. _ S
> The methodology takes its name from the idea tha e
baneficial elements of traditional software enginen
practices are taken to extreme ievelsl. i
The most prominent of several agile saftwart

methodologies. - differs

- ramming 1
Like other agile methodologies, Eftfe"rﬂ; ‘:"gbm o higher
from traditional methodologies Pf'miﬂi{ :
value on adaptability than on predictabilty-

e Ennﬂ?"""!

Softwa

Scanned by CamScanner

> Proponents of XP regard ongoing changes to Fequirgman ;
an often natural and often inescapable aspect of sof taals
development projects. ﬁwal'&

» Uses an object-oriented approach as its preferred dgy,
paradigm. g
Why is it called “Extreme?"

Extreme Programming takes the effective principles and practj
extreme levels. ICes ty

¥ Code reviews are effective as the code is reviewed all

¥ Testing is effective as there is continuous re

the tfﬂ'le'
testing.

9resSion gng

¥ Design is effective as everybody needs fo do refactoring 4
v f_nlegration testing is important as integrate and test ':a-q?'-
times a day. Severa|
v Short iterations are effective a i .
‘ 2 as the planning game fo
piannm_g and iteration planning. g i'EJease
E:E:[L?-Tv?t Erotghramming encompasses a set of rules and practices
! in the context of four framework activities: i
coding, and testing. acivilies: planning, design,

smple desige e wslyhong
CRC cardh

SrCtone

| setware incrompnr I T ’
Proec! welocity . 1 . 2
Yy enmputed | EORRINAN infage

BCCRMNCY Msting

0y , Fig: Extreme programmi
1. Planning . rogramming process

EIOD"“E'M

> The planning activity begine ..
that ;eas’::?igeg ;?u‘;fgdbfegfs With the creation of a set of stories
be built, - walres and functionality for software to

i m "'Saﬂw'are'Ehglnieéﬁ'hg

. written by the customer and is placed on an index
gach story 1S {omer assigns a value to the story based on the
v e 93255 value of the feature of function.

the XP (Extreme Programming) team then assess
{and assign @ cost — measured in development

; uire more than three qevelopment_ weeks, the
) _w;LLZ% to split the story into smaller stories, and the
A e;fi of value and cost ocours again.

decide how to
the XP team work together to
an_d to the next release to be developed by the XP

pesign Keep It Simple) principle. A simple
: ws the KIS (Keep

XP Idesi;g;:;'sﬂg preferred over a more complex representation.

design

iility
the use of CRC (Class Responsibil
<t iﬁfzfgﬁggms as an effective mechanism for thinking
gt?git the software is an object oriented context.

RC cards identify and organize thg ‘object oriented classes
s f-;at are relevant to current software increment.
5 The CRC cards are the only design work product produced as
a part of XP process. _ X
If a difficult design is encounter as a part of the desngn_ o Ia
story, XP recommends the immediate creation of that portion of
the design called as ‘spike solution’.

Y

» XP encourages refactoring—a construction technique.

Coding

$ Once the unit test has been created, the developer better able
to focus on what must be implemented to pass the unit ‘E{SL

» Once the code compiete, it can be unit tested immediately,
thereby providing instantaneous feedback to the dgvelopef-.

> A key concept during the coding activity is pair Pfogfa‘“tf“:‘:é

XP recommends that two people work together @ e

computer workstation to create code for a story: This pmuaﬁly

amechanism for real time problem solving and ’_ea'_f""l"_‘a q -t

assurance. LA g

As pair programmers complete their work, the code y

developed is integrated with the work of others. -

Software Engineering ‘m

Scanned by CamScanner

4. Testing

> The creation of ynj ing i
& unit test befor d the key element of
P Gorroact. efore coding is Y the

- :he unit tests that are created should be implemented using a
amework that enables them to be automated. This
encourages r

egression i h er code |
modified 9 on testing strategy whenever code is

> Ilndiw'dual unit test,
integration ang .
daily basis, Thj

S 8re organize into a "Universal Testing Suit",

alidation testing of the syslem can occur on

ot i S provides the XP team with a continual

indication of progress and also can raise warning flags early if
things are going away.

> XP acceptance fest
the customer ang fo

; f CUS on the overall system feature and
functionality th

at are visible and reviewable by the customer,

12.3 Cloud Computing

Cloud Computing is a type of com
resources rather than h
handle applications.

In cloud computing, the word cloud
as a metaphor for "the Internet,"

puting that relies on sharing computing
aving local servers or personal devices to

(also phrased as "the cloud") is used
£ s0 the phrase cloud computing means
a type of Internet-based computing,” where different services - such as
servers, storage and applications are delivered to an organization's
computers and devices through the Internet.

Clowd Sarvice Frovider

Chiud Vendoe's infrwmeweture

Benefits of cloud computing

Cloud computing is a big shift from the traditional way businesses think
about IT resources.. There are 6 common reasons organizations are
tuming to cloud computing services:

¢ Software Engineering

+ 8lso called customer test, are specified by

imi apital expense of buyipg
nq eliminates the © € Y
cloud Ccmpﬁ\t,:,rr;gre and setting up and running on-site
v e i er.
cos" re and :'ce it is comparatively cheap e e be
acenters: He + amounts of computing resou % can- e
dat d4: Even Vf’limes‘ typically with justs fe“:h;ngressure K8,
‘:riesioned in rnsl a lat of flexibility and taking
POV usinesse
iving ina.
Sl.,pacity planning -
| scale: The ber i
oba |e elastically.

i i include
; loud computing services inciu
bfits of ;gud speak, that means delivering
less
ility to sc@ s. For example, more or
the abilty ount of 1T resou:ﬁidth——right when its needed and
e rlgting power, storage. ba?on
F)r(r;rrnnprjie right geographic ioc:n'g ;emovﬂs the need for many of
- d compu : 25 e
productivity: fgIDI_‘I’_ teams can spend time on ach{lewng more
these tasﬁ;siiess goals. Hence is extremely productive.
important . The cloud computing offers several berﬁﬁ:s ove;oa;
Perfarma“;;te datacenter, including reduced network latency
S'IH%E;L?(;ES and greater economies of scale. a e
o Cloud computing makes data backup, disaste
Reflabithy: d business continuity easier and less expenstv*:a.
G i i ites on the
[sacause); data can be mirrored at multiple redundant sit

cloud provider’s network.

Types of cloud services

3. Software asas

1. Infrastructure-as-a-service (laaS)

» The most basic category of cloud computing services.

» With laaS, we rent IT infrastructure, servers and virtual

machines (VMs), storage, networks, operating systems from a
cloud provider on a pay-as-you-go basis. ;

2. Platform as a service (PaaS)

> Platform-as-a-service (PaaS) refers to cloud computing

services that supply an on-demand environment for

developing, testing, delivering and managing software
applications.

* PaaSis designed to make it easier for dévelopers to quickly

eate web or mobile apps, without worrying about setting up

Or managing the underlying 'infrastructure of servers, storage,

netwark and databases needed for development. :

e rvice (SaaS
~ R -
ngftt:{vare-as_a-%wlce (SaaS) is a method for delivering

typi E;re applications over the Internet, on demand and
Pically on g subscriplipn basis.

Software Engineering »

Scanned by CamScanner

so capable

itis al
in a network, but itis
s W . 1ons. : a
n variousé?;[;ed "cauoha re too big E:?;ess
. 5 1o
x;;l,ics:} 35, cloud proyigers host and § wor“jkmg on SPE [ve roblems gl the flexibility to pr
alion ang : St an manage he of WO solV! intainin
" ma!ntenancel like 50?&”5‘1"9 lnlraslruclure and hand?;m:,;e gsigned to e mas . i that
* Users conneq to (i are upgrades and security patching y y D erco™PY ~ er problems: multiuser infrastru ? arge
2 Web browser o teq o C2l0N over th 3 sUP erous SM2° " seliver @ demands ©
T SEr on their pp, & Intemnet, usually ity pume rids deWVE tinuous
es of cloud depiq Phone, tablet o PC. « mputi”g g the discon 1
1. i men . €O gtes W o Suc
Public cloygq ts 7 accomm.od ocessing: S applications, |
* Public clouds g inmrma“"" P < applied 10 @ Wldetiona! {asks through severa
Servi © Owned logy is 8PF . duca
sleefres et e, which d;i]:irolieratw by a third-party cioyg , Thetechne G al, scientific or € : ™
ai elr %
5 Microsoﬂtstorage over the Internetcomputmg resources [ike as ;ting resources. \vsis Web services such aSkAt'n
X i ’ m a i 2 ' ell
> Witha publ[curle 'S 8N example of 4 pybjic cload co F; Jsed in structural Zngtures' and scientific or mar g
inirastruc{ure{;so:)j:;wal:jhardwa"e- software and other syppar: ’ bogl:king. back-office ia
access (he ed and managed py i, pporting
rowser. se Services and manag Y the cloud Provider, We reSBarCh.

5 € our account ysin,
2, Private clougd 9 a web

terprise Mobility

ifti i ith more
d a shift in work habits, wi
o bile devices and cloud

> A Private clo
E)cciusjue]y b

> Abprivate ¢

ud refers to
Y asingle bys;
oud can pe phy:

12.5 En
cloud computing resources used

i ility is the tre
Ness or organization, £rterprise mobility

king out of the office and using mo

site sically | ; employees Wor s
y 5 datacenter. ¥ located on the company's on.- cenvices lo perform business ta‘sks, e B i e
thcgir:e COmpanies glgq Pay third-part :) The term refers not only to mobile workers and mobile dev i
5 IDrlvate cloud, ¥ service providers to host o the mobility of corporate data.
arg:lr:f;tst:jioud is one in which the services ang » Anemployee may upload a corporate presentation from his or
3. Hybrid cloug ned on a private Network and infrastructure _ her desktop PC to a cloud storage service then access it from
> Hybrig ul . apersonal iPad to show at a client site, for example.
i fd cloud compin i ; ; i i i i it
together by techrm!og:;3 lshariﬁllg.razd Private clouds, boyng ! E:stfrggsa?e;ﬂ Obwtca'n klmpmue it laac g L
" ;har‘ffzd between them, ® data and applications to be 1 » Enterpﬁ-se ms;::ll'll” oy I
~ Byallowing data and appfiar: Wity management products, such as data |
: Pplications t) . ; :) o0ss
ggg'“} clouds, hybrid cloud giyes &;’?2;’2 between private ang gg’d"r‘;”"ot; technologies, are available to help IT departments
more deployment options,. SES greater flexibility 5L Slrss ese risks, .
T ong acceptable use poli :
; . cy for e
I contribute to a successfy| enterpriyse e oooes: cap: sisa
mobility strategy.

O

In grid computin
task together. thus

Software Engineering-- m :

Scanned by CamScanner

